Page 66 - Carbon Nanotube Fibres and Yarns
P. 66
Carbon nanotube fibers spun directly from furnace 57
[28] Z.P. Wu, J.N. Wang, J. Ma, Methanol-mediated growth of carbon nanotubes, Carbon
47 (2009) 324–327, https://doi.org/10.1016/j.carbon.2008.09.034.
[29] B. Mas, B. Alemán, I. Dopico, I. Martin-Bragado, T. Naranjo, E.M. Pérez, et al., Group
16 elements control the synthesis of continuous fibers of carbon nanotubes, Carbon
101 (2016) 458–464, https://doi.org/10.1016/j.carbon.2016.02.005.
[30] E. Senokos, V. Reguero, J. Palma, J. Vilatela, R. MARCILLA, Macroscopic fibres of
CNTs as electrodes for multifunctional electric double layer capacitors: from quan-
tum capacitance to device performance, Nanoscale (2016) https://doi.org/10.1039/
C5NR07697H.
[31] J. Qiu, J. Terrones, J.J. Vilatela, M.E. Vickers, J. Elliott, A.H. Windle, Liquid Infiltration
into carbon nanotube fibers: effect on structure and electrical properties, ACS Nano
(2013) 8412–8422.
[32] J. Terrones, E. J a, J.J. Vilatela, A.H. Windle, Electric field-modulated non-ohmic
behavior of carbon nanotube fibers in polar liquids, ACS Nano (2014) 8497–8504,
https://doi.org/10.1021/nn5030835.
[33] R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fib-
ers of single-walled carbon nanotubes with metallic chirality, Adv. Mater. 23 (2011)
5064–5068, https://doi.org/10.1002/adma.201102754.
[34] J.J. Vilatela, A.H. Windle, A multifunctional yarn made of carbon nanotubes, J. Eng.
Fibers Fabrics 7 (2012) 23–28.
[35] C. Hoecker, F. Smail, M. Bajada, M. Pick, A. Boies, Catalyst nanoparticle growth
dynamics and their influence on product morphology in a CVD process for con-
tinuous carbon nanotube synthesis, Carbon (2015) https://doi.org/10.1016/j.car-
bon.2015.09.050.
[36] A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, E.I. Kauppinen, Correlation between catalyst
particle and single-walled carbon nanotube diameters, Carbon 43 (2005) 2251–2257,
https://doi.org/10.1016/j.carbon.2005.03.048.
[37] X.H. Zhong, Y.L. Li, Y.K. Liu, X.H. Qiao, Y. Feng, J. Liang, et al., Continuous multilay-
ered carbon nanotube yarns, Adv. Mater. 22 (2010) 692–696, https://doi.org/10.1002/
adma.200902943.
[38] K.K.K. Koziol, C. Ducati, A.H. Windle, Carbon nanotubes with catalyst controlled chi-
ral angle, Chem. Mater. 22 (2010) 4904–4911, https://doi.org/10.1021/cm100916m.
[39] A. Morelos-Gómez, M. Fujishige, S. Magdalena Vega-Díaz, I. Ito, T. Fukuyo,
R. Cruz-Silva, et al., High electrical conductivity of double-walled carbon nanotube
fibers by hydrogen peroxide treatments, J. Mater. Chem. A 4 (2016) 74–82, https://doi.
org/10.1039/c5ta06662j.
[40] S.W. Pattinson, K. Prehn, I.A. Kinloch, D. Eder, K.K.K. Koziol, K. Schulte, et al., The
life and death of carbon nanotubes, RSC Adv. 2 (2012) 2909, https://doi.org/10.1039/
c2ra00660j.
[41] C. Singh, M.S.P. Shaffer, A.H. Windle, Production of controlled architectures of
aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon
41 (2003) 359–368, https://doi.org/10.1016/S0008-6223(02)00314-7.
[42] M. Endo, Grow carbon fibers in the vapor phase, Chemtech 18 (1988) 568–576.
[43] A. Windle, Carbon nanotube fibres: science and technology transfer, in: A. Misra,
J.R. Bellare (Eds.), Nanoscience and Technology for Mankind, The National Academy
of Sciences, India, 2014.
[44] B. Alemán, M.M. Bernal, B. Mas, E.M. Perez, V. Reguero, G. Xu, et al., Inherent pre-
dominance of high chiral angle metallic carbon nanotubes in continuous fibers grown
from molten catalyst, Nanoscale (2016) https://doi.org/10.1039/C5NR07455J.
[45] K.L. Stano, K. Koziol, M. Pick, M.S. Motta, A. Moisala, J.J. Vilatela, et al., Direct
spinning of carbon nanotube fibres from liquid feedstock, Int. J. Mater. Form. 1 (2008)
59–62, https://doi.org/10.1007/s12289-008-0380-x.