Page 67 - Carbon Nanotube Fibres and Yarns
P. 67

58    Carbon Nanotube Fibers and Yarns


            [46]  M.S. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, The role of sulphur in the synthesis
              of carbon nanotubes by chemical vapour deposition at high temperatures, J. Nanosci.
              Nanotechnol. 8 (2008) 2442–2449.
            [47]  Y. Alinejad, A. Shahverdi, N. Faucheux, G. Soucy, Synthesis of single-walled carbon
              nanotubes using induction thermal plasma technology with different catalysts: thermo-
              dynamic and experimental studies, J. Phys. Conf. Ser. 406 (2012) 012019https://doi.
              org/10.1088/1742-6596/406/1/012019.
            [48]  B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing
              inspiration from polymer fiber spinning, ACS Nano (2015) https://doi.org/10.1021/
              acsnano.5b02408.
            [49]  W. Ren, F. Li, H.M. Cheng, Evidence for, and an understanding of, the initial nuclea-
              tion of carbon nanotubes produced by a floating catalyst method, J. Phys. Chem. B 110
              (2006) 16941–16946, https://doi.org/10.1021/jp062526x.
            [50]  H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of
              long single-walled carbon nanotube strands, Science 296 (2002) 884–886, https://doi.
              org/10.1126/science.1066996.
            [51]  A. Kaskela, P. Laiho, N. Fukaya, K. Mustonen, T. Susi, H. Jiang, et al., Highly individual
              SWCNTs for high performance thin film electronics, Carbon 103 (2016) 228–234,
              https://doi.org/10.1016/j.carbon.2016.02.099.
            [52]  K.  Koziol, J.  Vilatela, A.  Moisala, M.  Motta, P.  Cunniff, M.  Sennett, et  al., High-
              performance carbon nanotube fiber, Science 318 (2007) 1892–1895,  https://doi.
              org/10.1126/science.1147635.
            [53]  J.-P.  Matas, J.F.  Morris, É.  Guazzelli, Inertial migration of rigid spherical particles
              in Poiseuille flow, J. Fluid Mech. 515 (2004) 171–195,  https://doi.org/10.1017/
              S0022112004000254.
            [54]  V. Balakrishnan, M. Bedewy, E.R. Meshot, S.W. Pattinson, E.S. Polsen, F. Laye, et al.,
              Real-time imaging of self-organization and mechanical competition in carbon na-
              notube forest growth, ACS Nano 10 (2016) 11496–11504, https://doi.org/10.1021/
              acsnano.6b07251.
            [55]  G. Hou, V. Ng, Y. Song, L. Zhang, C. Xu, V. Shanov, et al., Numerical and experimental
              investigation of carbon nanotube sock formation, MRS Adv. (2016) 1–6, https://doi.
              org/10.1557/adv.2016.632.
            [56]  G. Hou, R. Su, A. Wang, V. Ng, W. Li, Y. Song, et al., The effect of a convection vortex
              on sock formation in the floating catalyst method for carbon nanotube synthesis, Car-
              bon 102 (2016) 513–519, https://doi.org/10.1016/j.carbon.2016.02.087.
            [57]  J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like rib-
              bon  with  high  ductility  and  high  electrical  conductivity,  Nat.  Commun.  5  (2014)
              3848https://doi.org/10.1038/ncomms4848.
            [58]  H.E. Misak, S. Mall, Electrical conductivity, strength and microstructure of carbon
              nanotube multi-yarns, Mater. Des. 75 (2015) 76–84, https://doi.org/10.1016/j.mat-
              des.2015.03.020.
            [59]  D.  Lashmore, B.  White, M.  Schauer, J.  Mann, Synthesis and electronic proper-
              ties SWCNT sheets, in: Materials Research Society Symposium Proceedings, 2008,
              https://doi.org/10.1557/PROC-1081-P06-09. 1081E:No pp. given, Paper #: 1081-
              P06-09.
            [60]  M.W. Schauer, D. Lashmore, B. White, Synthesis and properties of carbon nanotube
              yarns and textiles, in: MRS Proceedings, 2008,  https://doi.org/10.1557/PROC-
              1081-P03-05. 1081:1081-P03-05.
            [61]  J.J. Vilatela, J.A. Elliott, A.H. Windle, A model for the strength of yarn-like carbon na-
              notube fibers,  ACS Nano 5 (2011) 1921–1927, https://doi.org/10.1021/nn102925a.
            [62]  T.S. Gspann, N. Montinaro, A. Pantano, J.A. Elliott, A.H. Windle, Mechanical proper-
              ties of carbon nanotube fibres: St Venant’s principle at the limit and the role of imperfec-
              tions, Carbon 93 (2015) 1021–1033, https://doi.org/10.1016/j.carbon.2015.05.065.
   62   63   64   65   66   67   68   69   70   71   72