Page 67 - Carbon Nanotube Fibres and Yarns
P. 67
58 Carbon Nanotube Fibers and Yarns
[46] M.S. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, The role of sulphur in the synthesis
of carbon nanotubes by chemical vapour deposition at high temperatures, J. Nanosci.
Nanotechnol. 8 (2008) 2442–2449.
[47] Y. Alinejad, A. Shahverdi, N. Faucheux, G. Soucy, Synthesis of single-walled carbon
nanotubes using induction thermal plasma technology with different catalysts: thermo-
dynamic and experimental studies, J. Phys. Conf. Ser. 406 (2012) 012019https://doi.
org/10.1088/1742-6596/406/1/012019.
[48] B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing
inspiration from polymer fiber spinning, ACS Nano (2015) https://doi.org/10.1021/
acsnano.5b02408.
[49] W. Ren, F. Li, H.M. Cheng, Evidence for, and an understanding of, the initial nuclea-
tion of carbon nanotubes produced by a floating catalyst method, J. Phys. Chem. B 110
(2006) 16941–16946, https://doi.org/10.1021/jp062526x.
[50] H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of
long single-walled carbon nanotube strands, Science 296 (2002) 884–886, https://doi.
org/10.1126/science.1066996.
[51] A. Kaskela, P. Laiho, N. Fukaya, K. Mustonen, T. Susi, H. Jiang, et al., Highly individual
SWCNTs for high performance thin film electronics, Carbon 103 (2016) 228–234,
https://doi.org/10.1016/j.carbon.2016.02.099.
[52] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, et al., High-
performance carbon nanotube fiber, Science 318 (2007) 1892–1895, https://doi.
org/10.1126/science.1147635.
[53] J.-P. Matas, J.F. Morris, É. Guazzelli, Inertial migration of rigid spherical particles
in Poiseuille flow, J. Fluid Mech. 515 (2004) 171–195, https://doi.org/10.1017/
S0022112004000254.
[54] V. Balakrishnan, M. Bedewy, E.R. Meshot, S.W. Pattinson, E.S. Polsen, F. Laye, et al.,
Real-time imaging of self-organization and mechanical competition in carbon na-
notube forest growth, ACS Nano 10 (2016) 11496–11504, https://doi.org/10.1021/
acsnano.6b07251.
[55] G. Hou, V. Ng, Y. Song, L. Zhang, C. Xu, V. Shanov, et al., Numerical and experimental
investigation of carbon nanotube sock formation, MRS Adv. (2016) 1–6, https://doi.
org/10.1557/adv.2016.632.
[56] G. Hou, R. Su, A. Wang, V. Ng, W. Li, Y. Song, et al., The effect of a convection vortex
on sock formation in the floating catalyst method for carbon nanotube synthesis, Car-
bon 102 (2016) 513–519, https://doi.org/10.1016/j.carbon.2016.02.087.
[57] J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like rib-
bon with high ductility and high electrical conductivity, Nat. Commun. 5 (2014)
3848https://doi.org/10.1038/ncomms4848.
[58] H.E. Misak, S. Mall, Electrical conductivity, strength and microstructure of carbon
nanotube multi-yarns, Mater. Des. 75 (2015) 76–84, https://doi.org/10.1016/j.mat-
des.2015.03.020.
[59] D. Lashmore, B. White, M. Schauer, J. Mann, Synthesis and electronic proper-
ties SWCNT sheets, in: Materials Research Society Symposium Proceedings, 2008,
https://doi.org/10.1557/PROC-1081-P06-09. 1081E:No pp. given, Paper #: 1081-
P06-09.
[60] M.W. Schauer, D. Lashmore, B. White, Synthesis and properties of carbon nanotube
yarns and textiles, in: MRS Proceedings, 2008, https://doi.org/10.1557/PROC-
1081-P03-05. 1081:1081-P03-05.
[61] J.J. Vilatela, J.A. Elliott, A.H. Windle, A model for the strength of yarn-like carbon na-
notube fibers, ACS Nano 5 (2011) 1921–1927, https://doi.org/10.1021/nn102925a.
[62] T.S. Gspann, N. Montinaro, A. Pantano, J.A. Elliott, A.H. Windle, Mechanical proper-
ties of carbon nanotube fibres: St Venant’s principle at the limit and the role of imperfec-
tions, Carbon 93 (2015) 1021–1033, https://doi.org/10.1016/j.carbon.2015.05.065.