Page 65 - Carbon Nanotube Fibres and Yarns
P. 65
56 Carbon Nanotube Fibers and Yarns
[11] T. Gspann, F. Smail, A. Windle, Spinning of carbon nanotube fibres using the floating
catalyst high temperature route: purity issues and the critical role of sulphur, Faraday
Discuss. 173 (2014) 2–7, https://doi.org/10.1039/C4FD00066H.
[12] Y.-L. Li, K. I a, A.H. Windle, Direct spinning of carbon nanotube fibers from chemi-
cal vapor deposition synthesis, Science 304 (2004) 276–278, https://doi.org/10.1126/
science.1094982.
[13] Y.-L. Li, L.-H. Zhang, X.-H. Zhong, A.H. Windle, Synthesis of high purity
single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions, Na-
notechnology 18 (2007) 225604https://doi.org/10.1088/0957-4484/18/22/225604.
[14] M. Motta, I. Kinloch, A. Moisala, V. Premnath, M. Pick, A. Windle, The parameter
space for the direct spinning of fibres and films of carbon nanotubes, Phys. E 37 (2007)
40–43, https://doi.org/10.1016/j.physe.2006.07.005.
[15] M. Motta, Y.L. Li, I.A. Kinloch, A.H. Windle, Mechanical properties of continu-
ously spun fibers of carbon nanotubes, Nano Lett. 5 (2005) 1529–1533, https://doi.
org/10.1021/nl050634.
[16] Z. Li, Z. Liu, H. Sun, C. Gao, Superstructured assembly of nanocarbons: fullerenes,
nanotubes, and graphene, Chem. Rev. (2015) https://doi.org/10.1021/acs.chem-
rev.5b00102.
[17] J.J. Vilatela, A.H. Windle, Yarn-like carbon nanotube fibers, Adv. Mater. 22 (2010)
4959–4963, https://doi.org/10.1002/adma.201002131.
[18] J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Mul-
tifunctional CNT-polymer composites for ultra-tough structural supercapacitors and
desalination devices, Adv. Mater. 25 (2013) 6625–6632, https://doi.org/10.1002/
adma.201301317.
[19] A.S. Wu, X. Nie, M.C. Hudspeth, W.W. Chen, T.W. Chou, D.S. Lashmore, et al.,
Strain rate-dependent tensile properties and dynamic electromechanical response of
carbon nanotube fibers, Carbon 50 (2012) 3876–3881, https://doi.org/10.1016/j.
carbon.2012.04.031.
[20] Z.P. Wu, X.L. Huang, B. Li, Y.H. Yin, Y.S. Li, Y.S. Chen, et al., Strong carbon nanotube
macro-films with retained deformability at fairly low temperatures, Phys. E 47 (2013)
285–289, https://doi.org/10.1016/j.physe.2012.10.004.
[21] P. Davies, P. Papakonstantinou, N. Martin, I. Kratochvílová, C. Ewels, M. Shaffer, et al.,
Synthesis in gas and liquid phase: general discussion, Faraday Discuss. 173 (2014) 115–
135, https://doi.org/10.1039/C4FD90042A.
[22] T.S. Gspann, S.M. Juckes, J.F. Niven, M.B. Johnson, J.A. Elliott, M.A. White, et al.,
High thermal conductivities of carbon nanotube films and micro-fibres and their de-
pendence on morphology, Carbon 114 (2016) 160–168, https://doi.org/10.1016/j.
carbon.2016.12.006.
[23] Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, F. Wei, Modulating the diameter of
carbon nanotubes in array form via floating catalyst chemical vapor deposition, Appl.
Phys. A Mater. Sci. Process. 94 (2009) 853–860, https://doi.org/10.1007/s00339-008-
4904-5.
[24] X.-H. Zhong, Y.-L. Li, J.-M. Feng, Y.-R. Kang, S.-S. Han, Fabrication of a multifunc-
tional carbon nanotube “cotton” yarn by the direct chemical vapor deposition spinning
process, Nanoscale 4 (2012) 5614, https://doi.org/10.1039/c2nr31309j.
[25] D. Conroy, A. Moisala, S. Cardoso, A. Windle, J. Davidson, Carbon nanotube reactor:
ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up,
Chem. Eng. Sci. 65 (2010) 2965–2977, https://doi.org/10.1016/j.ces.2010.01.019.
[26] M.W. Schauer, D.S. Lashmore, D.J. Lewis, B.M. Lewis, E.C. Towle, Strength and elec-
trical conductivity of carbon nanotube yarns, Mater. Res. 1258 (2010).
[27] J. Chaffee, D. Lashmore, D. Lewis, J. Mann, M. Schauer, B. White, Direct synthesis of
CNT yarns and sheets. Nsti Nanotech 2008, Tech. Proc. 3 (2008) 118–121.