Page 188 - Carbon Nanotubes
P. 188

et
               180                               U.  ZIMMERMAN ai.
                                                          preted to signal the onset of metal-metal bonding. An
                                                          exception to the electronically determined cluster sta-
                                                          bility is C60Li12, which was observed to be particularly
                                                          stable independent of the cluster charge. Supported by
                                                          MNDO calculations, we found that the geometrical ar-
                                                          rangement of  atoms in this cluster,  one above each
                                                          pentagon of the fullerene, was most important for the
                                                          stability. At higher alkali metal coverage of the ful-
                                                          lerene,  an  electronic  shell structure  similar to pure
                                                          metal clusters is observed in the ionization threshold
                                                          of the clusters.


                                                          Acknowledgements-We  would like to thank H. Schaber for
                                                          his outstanding technical assistance, U. Naher for many stim-
                                                          ulating discussions, and A. Mittelbach for providing the C,,
                                                          used in the experiments.


                           ,
               IS’    I,, ,  ,    ,  ,  ,  ,  ,   ,                      REFERENCES
                     0.0    0.2    0.4    0.6    0.8
                                 RCJR0.t                   1.  A. E Hebard, M. J. Rosseinsky, R. C. Haddon, D W.
                                                             Murphy, S. H. Glarum, T. T.  Palstra, A. P.  Ramirez,
               Fig. 14. Energy levels calculated for an infinitely deep spher-   and A. R. Kortan, Nature 350, 600 (1991).
               ical potential well of radius R,,, with an infinitely high cen-   2.  K. Holczer, 0. Klein, S.-M. Huang, R. E. Kaner, K.4.
               tral  potential  barrier  with  a  radius  Rc6,;  the  zigzag line   Fu, R. L. Whetten, and E Diederich, Science 252, 1154
               corresponds  to the path of  the highest occupied level of  a   (1991).
                  C,Cs,  cluster as it grows from x  = 1  to x = 500.   3.  P. W.  Stephens, L. Mihaly, J. B.  Wiley, S.-M. Huang,
                                                             R. B.  Kaner, E Diederich, R. L. Whetten, and K. Holc-
                                                             zer, Phys. Rev. B 45, 543 (1992).
                                                           4.  A. R. Kortan, N. Kopylov, S. Glarum, E. M. Gyogy,
               change significantly when placing a ‘hole’ in its cen-   A. P. Ramirez,  R.  M. Fleming, 0. Zhou, E A. Thiel,
               ter.  This qualitative result  is in  agreement  with  the   P. L. Trevor, and R. C. Haddon, Nature 360,566 (1992).
               experimental observation. Similar results can be ob-   5.  D. W.  Murphy, M. Z. Rosseinsky, R. M. Fleming, eta/.,
                                                             J. Phys. Chem. Solids 53, 1321 (1992).
               tained from self-consistent jellium calculations[%].   6. P. Weis, R. D.  Beck, G. Brauchle, and M. M. Kappes,
                                                             J.  Chem. Phys. 100, 5684 (1994).
                                                           7.  U. Zimmermann, N. Malinowski, U. Naher, S. Frank,
                              5.  SUMMARY                    and T.  P. Martin, Phys. Rev. Lett. 72, 3542 (1994).
                                                           8.   T. P. Martin, N. Malinowski, U. Zimmermann, U. Na-
                 By coevaporation of fullerenes and metal in a gas   her, and H. Schaber, J. Chem. Phw. 99. 4210 (1993).
               aggregation cell, metal-fullerene clusters having a va-   9.  T.  P. Martin, T.  Bergmann, H. Gohlich, and T.  Lange,
               riety of compositions can be produced. Investigating   J. Phys. Chem. 95, 6421 (1991).
               such clusters using time-of-flight mass spectrometry,   10.  T. P. Martin, U. Naher, T. Bergmann, H. Gohlich, and
                                                             T.  Lange,  Chem. Phys. Lett. 183, 119 (1991).
               we found that alkaline earth metals will coat single ful-   11.  T. P.  Martin, T. Bergmann, H. Gohlich, and T. Lange,
               lerene  molecules with  up to  four  distinct  layers of   Chem. Phys. Lett. 176, 343 (1991).
               metal  atoms.  Clusters  with  complete  metal  layers   12.  U. Zimmermann, A. Burkhardt, N. Malinowski, U. Na-
               proved to be particularly stable and appeared with en-   her, and T. P. Martin, J. Chem. Phys. 101, 2244 (1994).
               hanced intensity in the mass spectra. The number of   13.  J.  Kohanoff,  W.  Andreoni,  and M.  Parinello,  Chem.
                                                             Phys. Lett. 198, 472 (1992).
               atoms required to complete such a layer is identical for   14.  L. Pauling, J. Am. Chem. SOC. 69, 542 (1947).
               each alkaline earth metal. A geometrical arrangement   15.  C. S. Yannoni, P.  P.  Bernier, D. S. Bethune, G. Meijer,
               of  atoms,  having  I-symmetry in the  case of  coated   and J. K. Salem, J. Am. Chem. Soc. 113, 3190 (1991).
               c60  and D,-symmetry in the case of coated C,,, was   16.  A. L. Mackay, Acta Crystallogr. 15, 916 (1962).
               proposed for each layer. The number of alkaline earth   17.  U. Naher, U. Zimmermann, and T. P. Martin, J. Chem.
                                                             Phys. 99, 2256 (1993).
               atoms in the first layer of metal on c60 or C70 is iden-   18.  J. H. Weaver, J. Phys. Chem. Solids 53, 1433 (1992).
               tical to the number of carbon rings on the surface of   19.  M. J. S. Dewar and W.  Thiel, J. Am. Chem. SOC. 99,
               the fullerene coated,  so  it seems possible to ‘count’   4899 (1977).
               these rings.                               20.  M. J.  S. Dewar and W.  Thiel, J. Am. Ckem. SOC. 99,
                                                             4907 (1977).
                  In coating fullerenes with alkali metals, the stabil-   21.  H. Gohlich, T. Lange, T. Bergmann, and T. P. Martin,
               ity of the cluster seemed to be determined primarily   Phys. Rev. Lett. 65, 748 (1990).
               by the electronic configuration. The units C&i6  and   22.  H. Gohlich, T. Lange, T. Bergmann, and T. P.  Martin,
               C7oM6, where M is any alkali metal, proved to be ex-   Z. Phys D 19, 117 (1991).
               ceptionally stable cluster building blocks.  Coating a   23.  W.  D. Knight, K. Clemenger,  W.  A.  de Heer,  W.  A.
                                                             Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev.
               fullerene with more than 7 alkali metal atoms led to   Lett. 52, 2141 (1984).
               an  even-odd  alternation  in  the mass  spectra,  inter-   24.  S. Satpathy and M. Springborg, private communications.
   183   184   185   186   187   188   189   190   191   192