Page 54 - Carbon Nanotubes
P. 54
Electronic and structural properties of carbon nanotubes 45
graphene sheet, and on the other hand the small band 4. G. G. Tibbetts, J. Crystal Growth 66, 632 (1983).
gap and truly metallic serpentine conformation nano- 5. J. S. Speck, M. Endo, and M. S. Dresselhaus, J. Crys-
tal Growth 94, 834 (1989).
tubes that do satisfy this condition. We have earlier 6. T. W. Ebbesen and P. M. Ajayan, Nature (London) 358,
demonstrated[ 10-121 for the serpentine nanotubes 220 (1992).
that, for diameters under a nanometer, we expect that 7. S. Iijima and T. Ichihashi, Nature (London) 363, 603
the density of states at the Fermi level is comparable (1993).
to metallic densities and that the nanotubes should not 8. D. S. Bethune, C. H. Klang, M. S. DeVries, G. Gorman,
Peierls-distort at normal temperatures. Independent R. Savoy, J. Vazquez, and R. Beyers, Nature (London)
363, 605 (1993).
of helicity, we find that the larger-diameter moderate 9. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M.
band gap members of the family of moderate band Shiraishi, and H. W. Kroto, J. Phys. Chem. SoNds 54,
gap nanotubes (nl - n2 # 3 m) have bandgaps given 1841 (1993).
approximately by Eg = I V,, I ( rcc/RT) and hence do 10. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys.
Rev. Lett. 68, 631 (1992).
not have bandgaps approaching kBT at room temper- 11. C. T. White, J. W. Mintmire, R. C. Mowrey, D. W.
ature until their diameters exceed approximately about Brenner, D. H. Robertson, J. A. Harrison, and B. I.
30 nm[lO]. Dunlap, In Buckminsferfullerenes (Edited by W. E. Bil-
We have also examined the energetics and elastic lups and M. A. Ciufolini) pp. 125-184. VCH, New York,
(1993).
properties of small-diameter graphitic nanotubes using 12. J. W. Mintmire, D. H. Robertson, B. I. Dunlap, R. C.
both first-principles and empirical potentials[W] . We Mowrey, D. W. Brenner, and C. T. White, Electrical,
find that the strain energy per carbon relative to an un- Optical, and Magnetic Properties of Organic Solid State
strained graphite sheet goes as 1/R$ (where RT is the Materials (Edited by L. Y. Chiang, A. E Garito, and
nanotube radius) and is insensitive to other aspects of D. J. Sandman) p. 339. MRS Symposia Proceedings No.
247. Materials Research Society, Pittsburgh (1992).
the lattice structure, indicating that relationships de- 13. C. T. White, D. H. Robertson, and J. W. Mintmire,
rivable from continuum elastic theory persist well into Phys. Rev. B 47, 5485 (1993).
the small radius limit. In general, we find that the elas- 14. J. W. Mintmire, D. H. Robertson, and C. T. White, J.
tic properties are those expected by directly extrapo- Phys. Chem. Solids 54, 1835 (1993).
lating the behavior of larger graphitic fibers to a small 15. N. Hamada, S. Sawada, and A. Oshiyamu, Phys. Rev.
Lett. 68, 1579 (1992).
cross-section. 96. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus,
The recent advances in synthesis of single-shell Phys. Rev. B 46, 1804 (1992). Mater. Res. SOC. Sym.
nanotubes should stimulate a wealth of new experi- Proc. 247,333 (1992); Appl. Phys. Lett. 60,2204 (1992).
mental and theoretical studies of these promising ma- 47. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J.
Appl. Phys. 73, 494 (1993).
terials aimed at determining their structural, electronic, 18. H. Ajiki and T. Ando, J. Phys. Soc. Japan 62, 1255
and mechanical properties. Many questions remain to (1993). J. Phys. Soc. Japan 62, 2470 (1993).
be further investigated. How can they be termi- 19. P.-J. Lin-Chung and A. K. Rajagopal, J: Phyx C6,3697
(1994). Phys. Rev. B 49, 8454 (1994).
nated[29,43] and can they be connected[30]? What are 20. X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie,
their electrical properties? For those that are semicon- Phys. Rev. Lett. 72, 1878 (1994).
ductors, can they be successfully doped[#]? What are 21. D. J. Klein, W. A. Seitz, and T. G. Schmalz, J. Phys.
the mechanical properties of these nanotubes? How Chem. 97, 1231 (1993).
will they respond under compression and stressI23- 22. K. Harigaya, Phys. Rev. B 45, 12071 (1992).
28]? Do they have the high strengths and rigidity that 23. D. H. Robertson, D. W. Brenner, and J. W. Mintmire,
Phys. Rev. B 45, 12592 (1992).
their graphitic and tubular structure implies? How are 24. A. A. Lucas, P. H. Lambin, and R. E. Smalley, J. Phys.
these nanotubes formed[43,45,46]? Can techniques be Chem. Solids 54, 581 (1993).
devised that optimize the growth and allow the extrac- 25. J.-C. Charlier and J.-P. Michenaud, Phys. Rev. Lett. 70,
1858 (1993).
tion of macroscopic amounts of selected nano- 26. G. Overney, W. Zhong, and D. Tomanek, Z. Phys. D
tubes[7,8]? These questions all deserve immediate 27, 93 (1993).
attention, and the promise of these noveI all-carbon 21. R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney,
materials justify this as a major research area for the and B. Chan, Nature 364, 514 (1993).
current decade. 28. J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73, 676
(1994).
29. M. Fujita, R. Saito, G. Dresselhaus, M. S. Dresselhaus,
Acknowledgements-This work was supported by the Office Phys. Rev. B 45, 13834 (1992).
of Naval Research (ONR) through the Naval Research Lab- 30. . B.i. Dunlap, Phys. Rev. B 46, 1933 (1992).
oratory and directly through the ONR (Chemistry-Physics 31. J. C. Slater and G. E Koster, Phys. Rev. 94, 1498 (1954).
and Materials Divisions. We thank D. H. Robertson, D. W.
Brenner, and E. I. Dunlap for many useful discussions. 32. M. L. Elert, J. W. Mintmire, and C. T. White, J. Phys.
(Paris), Colloq. 44, C3-451 (1983).
33. M. L. Elert, C. T. White, and J. W. Mintmire, Mol.
REFERENCES Cryst. Liq. Cryst. 125, 329 (1985). C. T. White, D. H.
Robertson, and J. W. Mintmire, unpublished.
1. S. Iijima, Nature (London) 354, 56 (1991). 34. J. W. Mintmire and C. T. White, Phys. Rev. Lett. 50,
2. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and 101 (1983). Phys. Rev. B 28, 3283 (1983).
D. R. Huffman, Chem. Phys. Lett. 170, 167 (1990). Na- 35. J. W. Mintmire, In Density Functional Methods in
ture 347, 354 (1990). Chemistry (Edited by J. Labanowski and 3. Andzelm)
3. W. E. Billups and M. A. Ciufolini, eds. Buckminster- p. 125. Springer-Verlag, New York (1991).
fullerenes. VCH, New York (1993). 36. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J.