Page 54 - Carbon Nanotubes
P. 54

Electronic and structural  properties of  carbon nanotubes   45
           graphene sheet, and on the other hand the small band   4.  G. G.  Tibbetts, J. Crystal Growth 66, 632 (1983).
           gap and truly metallic serpentine conformation nano-   5.  J. S. Speck, M. Endo, and M. S. Dresselhaus, J. Crys-
                                                         tal Growth 94,  834 (1989).
           tubes that do satisfy this condition. We have earlier   6.  T. W. Ebbesen and P. M. Ajayan, Nature (London) 358,
           demonstrated[ 10-121  for  the  serpentine  nanotubes   220 (1992).
           that, for diameters under a nanometer, we expect that   7.  S.  Iijima and T. Ichihashi, Nature (London) 363, 603
           the density of states at the Fermi level is comparable   (1993).
           to metallic densities and that the nanotubes should not   8.  D. S. Bethune, C. H. Klang, M. S. DeVries, G. Gorman,
           Peierls-distort  at normal temperatures.  Independent   R. Savoy, J. Vazquez, and R. Beyers, Nature (London)
                                                         363, 605 (1993).
           of helicity, we find that the larger-diameter moderate   9.  M.  Endo,  K.  Takeuchi,  S.  Igarashi,  K.  Kobori,  M.
           band gap members of  the family of  moderate band   Shiraishi, and H. W.  Kroto, J. Phys. Chem. SoNds 54,
           gap nanotubes (nl - n2 # 3 m) have bandgaps given   1841 (1993).
           approximately by Eg = I V,, I ( rcc/RT) and hence do   10.  J. W.  Mintmire,  B.  I. Dunlap, and C. T. White, Phys.
                                                         Rev. Lett. 68, 631 (1992).
           not have bandgaps approaching kBT at room temper-   11.  C. T.  White,  J.  W.  Mintmire,  R.  C.  Mowrey,  D.  W.
           ature until their diameters exceed approximately about   Brenner,  D.  H.  Robertson,  J. A. Harrison, and B.  I.
           30 nm[lO].                                    Dunlap, In Buckminsferfullerenes (Edited by W.  E. Bil-
             We have also examined the energetics and elastic   lups and M. A. Ciufolini) pp. 125-184.  VCH, New York,
                                                         (1993).
           properties of small-diameter graphitic nanotubes using   12.  J. W.  Mintmire, D. H. Robertson,  B. I. Dunlap, R. C.
           both first-principles and empirical potentials[W]  . We   Mowrey, D.  W.  Brenner,  and C. T. White, Electrical,
           find that the strain energy per carbon relative to an un-   Optical, and Magnetic Properties of Organic Solid State
           strained graphite sheet goes as 1/R$  (where RT is the   Materials (Edited by L.  Y.  Chiang, A. E Garito,  and
           nanotube radius) and is insensitive  to other aspects of   D.  J. Sandman) p. 339. MRS Symposia Proceedings No.
                                                         247. Materials Research Society, Pittsburgh (1992).
           the lattice structure, indicating that relationships  de-   13. C.  T.  White,  D.  H. Robertson,  and  J.  W.  Mintmire,
           rivable from continuum elastic theory persist well into   Phys. Rev. B 47, 5485 (1993).
           the small radius limit. In general, we find that the elas-   14. J. W. Mintmire, D. H. Robertson, and C. T. White, J.
           tic properties  are those expected by directly extrapo-   Phys. Chem. Solids 54, 1835 (1993).
           lating the behavior of larger graphitic fibers to a small   15.  N. Hamada, S. Sawada, and A. Oshiyamu, Phys. Rev.
                                                         Lett. 68, 1579 (1992).
           cross-section.                             96.  R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus,
             The recent  advances  in  synthesis  of  single-shell   Phys. Rev. B 46,  1804 (1992). Mater. Res.  SOC. Sym.
           nanotubes  should stimulate a wealth of  new  experi-   Proc. 247,333 (1992); Appl. Phys. Lett. 60,2204 (1992).
           mental and theoretical studies of these promising ma-   47.  R.  Saito,  G.  Dresselhaus,  and M.  S.  Dresselhaus,  J.
                                                         Appl. Phys. 73, 494 (1993).
           terials aimed at determining their structural, electronic,   18. H. Ajiki  and T. Ando,  J. Phys. Soc.  Japan 62,  1255
           and mechanical properties. Many questions remain to   (1993). J. Phys. Soc. Japan 62, 2470 (1993).
           be  further  investigated.  How  can  they  be  termi-   19. P.-J. Lin-Chung and A. K. Rajagopal, J: Phyx C6,3697
                                                         (1994). Phys. Rev. B 49, 8454 (1994).
           nated[29,43] and can they be connected[30]? What are   20.  X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie,
           their electrical properties? For those that are semicon-   Phys. Rev. Lett. 72, 1878 (1994).
           ductors, can they be successfully doped[#]?  What are   21.  D.  J. Klein, W.  A. Seitz, and T.  G.  Schmalz, J. Phys.
           the mechanical properties  of these nanotubes?  How   Chem. 97, 1231 (1993).
           will they respond  under  compression  and stressI23-   22.  K.  Harigaya, Phys. Rev. B 45,  12071 (1992).
           28]? Do they have the high strengths and rigidity that   23.  D. H. Robertson, D. W. Brenner, and J. W. Mintmire,
                                                         Phys. Rev. B 45,  12592 (1992).
           their graphitic and tubular structure implies? How are   24.  A. A. Lucas, P. H. Lambin, and R. E. Smalley, J. Phys.
           these nanotubes formed[43,45,46]? Can techniques be   Chem. Solids 54, 581 (1993).
           devised that optimize the growth and allow the extrac-   25.  J.-C. Charlier and J.-P. Michenaud, Phys. Rev. Lett. 70,
                                                         1858 (1993).
           tion  of  macroscopic  amounts  of  selected  nano-   26.  G. Overney, W.  Zhong,  and D. Tomanek,  Z. Phys. D
           tubes[7,8]?  These  questions  all  deserve  immediate   27, 93 (1993).
           attention, and the promise of these noveI all-carbon   21.  R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney,
           materials justify this as a major research area for the   and B.  Chan, Nature 364, 514 (1993).
           current decade.                            28.  J.  Tersoff  and R. S. Ruoff, Phys. Rev. Lett. 73, 676
                                                         (1994).
                                                      29.  M. Fujita, R. Saito, G. Dresselhaus, M. S. Dresselhaus,
           Acknowledgements-This  work was supported by the Office   Phys. Rev. B 45, 13834 (1992).
           of Naval Research (ONR) through the Naval Research Lab-   30.  .  B.i. Dunlap, Phys. Rev. B 46, 1933 (1992).
           oratory and directly through the ONR (Chemistry-Physics   31.  J. C. Slater and G. E Koster, Phys. Rev. 94, 1498 (1954).
           and Materials Divisions. We thank D.  H. Robertson, D. W.
           Brenner, and E.  I. Dunlap  for many useful discussions.   32.  M. L. Elert, J. W. Mintmire, and C. T. White, J. Phys.
                                                         (Paris), Colloq. 44, C3-451  (1983).
                                                      33.  M.  L.  Elert,  C.  T.  White,  and J.  W.  Mintmire,  Mol.
                          REFERENCES                     Cryst. Liq. Cryst. 125, 329 (1985). C. T. White, D. H.
                                                         Robertson,  and J. W. Mintmire, unpublished.
            1. S. Iijima, Nature (London) 354, 56 (1991).   34.  J. W. Mintmire and C. T. White, Phys. Rev. Lett. 50,
            2.  W.  Kratschmer,  L.  D.  Lamb,  K.  Fostiropoulos,  and   101 (1983).  Phys. Rev. B 28, 3283 (1983).
              D. R. Huffman, Chem. Phys. Lett. 170, 167 (1990). Na-   35.  J.  W.  Mintmire,  In  Density  Functional  Methods  in
              ture 347, 354 (1990).                      Chemistry (Edited by  J. Labanowski and 3. Andzelm)
            3.  W.  E. Billups and M. A. Ciufolini, eds. Buckminster-   p.  125. Springer-Verlag, New York (1991).
              fullerenes. VCH, New York (1993).       36.  B.  I.  Dunlap,  J.  W.  D.  Connolly, and J.  R.  Sabin, J.
   49   50   51   52   53   54   55   56   57   58   59