Page 63 - Cascade biocatalysis
P. 63
References 39
12. Serov, A.E., Popova, A.S., Fedorchuk, 21. Carrea, G., Riva, S., Bovara, R., and
V.V., and Tishkov, V.I. (2002) Engineer- Pasta, P. (1988) Enzymatic oxidoreduc-
ing of coenzyme specificity of formate tion of steroids in two-phase systems:
dehydrogenase from Saccharomyces effects of organic solvents on enzyme
cerevisiae. Biochem. J., 367, 841–847. kinetics and evaluation of the perfor-
13. Gul-Karaguler, N., Sessions, R.B., mance of different reactors. Enzyme
Clarke, A.R., and Holbrook, J. (2001) Microb. Technol., 11, 333–340.
A single mutation in the NAD-specific 22. Shimizu, S. and Yamasa, H. (1990)
formate dehydrogenase from Candida Stereospecific reduction of 3-keto acid
methylica allows the enzyme to use esters by a novel aldehyde reductase of
NADP. Biotechnol. Lett., 23, 283–287. Sporobolomyces salmonicolor in a water-
14. Hatrongjit, R. and Packdibamrung, K. organic solvent two-phasic system. Ann.
+
(2010) A novel NADP -dependent for- N.Y. Acad. Sci., 613, 628–632.
mate dehydrogenase from Burkholderia 23. Eckstein, M., Daussmann, T., and
stabilis 15516: screening, purification Kragl, U. (2004) Recent developments
and characterization. Enzyme Microb. in NAD(P)H regeneration for enzy-
Technol., 46, 557–561. matic reductions in one- and two-phase
15. Hoelsch, K., S¨ uhrer, I., Heusel, M., and systems. Biocatal. Biotransfor., 22, 89–96.
Weuster-Botz, D. (2013) Engineering 24. Vrtis, J.M., White, A.K., Metcalf, W.W.,
of formate dehydrogenase: synergistic and van der Donk, W.A. (2001) Phos-
effect of mutations affecting cofactor phite dehydrogenase: an unusual
specificity and chemical stability. Appl. phosphoryl transfer reaction. J. Am.
Microbiol. Biotechnol., 97, 2473–2481. Chem. Soc., 123, 2672–2673.
16. Tishkov, V.I. and Popov, V.O. (2004) 25. Vrtis, J.M., White, A.K., Metcalf,
Catalytic mechanism and application W.W., and van der Donk, W.A. (2002)
of formate dehydrogenase. Biochemistry Phosphite dehydrogenase: a versatile
(Moscow), 69, 1252–1267. cofactor-regeneration enzyme. Angew.
17. Pauly, H.E. and Pfleiderer, G. (1975) Chem.Int.Ed., 114, 3391–3393.
D-Glucose dehydrogenase from Bacillus 26. Relyea, H.A. and van der Donk, W.A.
megaterium M 1286: purification, prop- (2005) Mechanism and applications of
erties and structure. Hoppe-Seyler’s Z. phosphite dehydrogenase. Bioorg. Chem.,
Physiol. Chem., 356, 1613–1623. 33, 171–189.
18. Smith, L.D., Budgen, N., Bungard, 27. Woodyer, R., van der Donk, W.A., and
S.J., Danson, M.J., and Hough, D.W. Zhao, H. (2003) Relaxing the nicoti-
(1989) Purification and characteriza- namide cofactor specificity of phosphite
tion of glucose dehydrogenase from dehydrogenase by rational design.
the thermoacidophilic archaebacterium Biochemistry, 42, 11604–11614.
Thermoplasma acidophilum. Biochem. J., 28. Johannes, T.W., Woodyer, R.D., and
261, 973–977. Zhao, H. (2005) Directed evolution of
19. Monti, D., Ferrandi, E.E., Zanellato, I., a thermostable phosphite dehydroge-
Hua, L., Polentini, F., Carrea, G., and nase for NAD(P)H regeneration. Appl.
Riva, S. (2009) One-pot multienzymatic Environ. Microbiol., 71, 5728–5734.
synthesis of 12-ketoursodeoxycholic 29. Johannes, T.W., Woodyer, R.D., and
acid: subtle cofactor specificities rule the Zhao, H. (2007) Efficient regeneration of
reaction equilibria of five biocatalysts NADPH using an engineered phosphite
working in a row. Adv. Synth. Catal., dehydrogenase. Biotechnol. Bioeng., 96,
351, 1303–1311. 18–26.
20. Kaswurm, V., Van Hecke, W., Kulbe, 30. Zou, Y., Zhang, H., Brunzelle, J.S.,
K.D., and Ludwig, R. (2013) Guide- Johannes, T.W., Woodyer, R., Hung,
lines for the application of NAD(P)H J.E., Nair, N., van der Donk, W.A.,
regenerating glucose dehydrogenase in Zhao, H., and Nair, S.K. (2012) Crystal
synthetic processes. Adv.Synth.Catal., structures of phosphite dehydrogenase
355, 1709–1714. provide insights into nicotinamide