Page 65 - Cascade biocatalysis
P. 65
References 41
+
NADP as cofactor. Eng. Life Sci., 11, NADH oxidase from 2-phenylethanol-
26–36. assimilating Brevibacterium sp. KU1309.
48. Wu, X., Kobori, H., Orita, I., Zhang, Appl. Microbiol. Biotechnol., 80, 71–78.
C.,Imanaka,T., Xing,X.-H.,and 57. Herles, C., Braune, A., and Blaut, M.
Fukui, T. (2012) Application of a (2002) Purification and characterization
novel thermostable NAD(P)H oxidase of an NADH oxidase from Eubacterium
from hyperthermophilic archaeon for ramulus. Arch. Microbiol., 178, 71–74.
+
the regeneration of both NAD and 58. Jia, B., Park, S.C., Lee, S., Pham, B.P.,
+
NADP . Biotechnol. Bioeng., 109, 53–62. Yu, R., Le, T.L., Han, S.W., Yang,
49. Riebel, B., Gibbs, P.R., Wellborn, W.B., J.K., Choi, M.S., Baumeister, W., and
and Bommarius, A.S. (2002) Cofactor Cheong, G.W. (2008) Hexameric ring
+
regeneration of NAD from NADH: structure of a thermophilic archaeon
novel water-forming NADH oxidases. NADH oxidase that produces predomi-
Adv.Synth.Catal., 344, 1156–1169. nantly H O. FEBS J., 275, 5355–5366.
2
50. Yu, J., Bryant, A.P., Marra, A., Lonetto, 59. Yang, X. and Ma, K. (2005) Purifica-
M.L., Ingraham, K.A., Chalker, A.F., tion and characterization of an NADH
Holmes, D.J., Holden, D., Rosenberg, oxidase from extremely thermophilic
M., and McDevitt, D. (2001) Character- anaerobic bacterium Thermotoga hypogea.
ization of the Streptococcus pneumoniae Arch. Microbiol., 183, 331–337.
NADH oxidase that is required for 60. Yang, X. and Ma, K. (2007) Character-
infection. Microbiology, 147, 431–438. ization of an exceedingly active NADH
51. Higuchi, M., Shimada, M., Yamamoto, oxidase from the anaerobic hyper-
Y., Hayashi, T., and Kamio, Y. (1993) thermophilic bacterium Thermotoga
Identification of two distinct NADH oxi- maritima. J. Bacteriol., 189, 3312–3317.
dases corresponding to H O -forming 61. Kengen, S.W., van der Oost, J., and
2
2
oxidase and H O-forming oxidase de Vos, W.M. (2003) Molecular char-
2
induced in Streptococcus mutans. J. Gen. acterization of H O -forming NADH
2
2
Microbiol., 139, 2343–2351. oxidases from Archaeoglobus fulgidus.
52. Gao, H., Tiwari, M.K., Kang, Y.C., and Eur. J. Biochem., 270, 2885–2894.
Lee, J.-K. (2012) Characterization of 62. Kawasaki, S., Ishikura, J., Chiba, D.,
H O-forming NADH oxidase from Nishino, T., and Niimura, Y. (2004)
2
Streptococcus pyogenes and its application Purification and characterization of
in l-rare sugar production. Bioorg. Med. an H O-forming NADH oxidase from
2
Chem. Lett., 22, 1931–1935. Clostridium aminovalericum: existence
53. Hummel, W., Kuzu, M., and Geueke, B. of an oxygen-detoxifying enzyme in
(2003) An efficient and selective enzy- an obligate anaerobic bacteria. Arch.
matic oxidation system for the synthesis Microbiol., 181, 324–330.
of enantiomerically pure D-tert-leucine. 63. Park, J.T., Hirano, J.-I., Thangavel, V.,
Org. Lett., 5, 3649–3650. Riebel, B., and Bommarius, A.S. (2011)
54. Hummel, W. and Riebel, B. (2003) NAD(P)H oxidase V from Lactobacillus
Isolation and biochemical characteri- plantarum (NoxV) displays enhanced
zation of a new NADH oxidase from operational stability even in absence
Lactobacillus brevis. Biotechnol. Lett., 25, of reducing agents. J. Mol. Catal. B:
51–54. Enzym., 71, 159–165.
55. Case, C.L., Rodriguez, J.R., and 64. ¨ Odman, P., Wellborn, W.B., and
Mukopadhyay, B. (2009) Character- Bommarius, A.S. (2004) An enzy-
ization of an NADH oxidase of the matic process to α-ketoglutarate from
flavin-dependent disulfide reductase L-glutamate: the coupled system
family from Methanocaldococcus jan- L-glutamate dehydrogenase/NADH
naschii. Microbiology, 155, 69–79. oxidase. Tetrahedron: Asymmetry, 15,
56. Hirano, J.-I., Miyamoto, K., and Ohta, 2933–2937.
H. (2008) Purification and characteri- 65. Geueke, B., Riebel, B., and Hummel, W.
zation of thermostable H O -forming (2003) NADH oxidase from Lactobacillus
2 2