Page 65 - Cascade biocatalysis
P. 65

References  41

                      +
                  NADP as cofactor. Eng. Life Sci., 11,  NADH oxidase from 2-phenylethanol-
                  26–36.                          assimilating Brevibacterium sp. KU1309.
               48. Wu, X., Kobori, H., Orita, I., Zhang,  Appl. Microbiol. Biotechnol., 80, 71–78.
                  C.,Imanaka,T., Xing,X.-H.,and  57. Herles, C., Braune, A., and Blaut, M.
                  Fukui, T. (2012) Application of a  (2002) Purification and characterization
                  novel thermostable NAD(P)H oxidase  of an NADH oxidase from Eubacterium
                  from hyperthermophilic archaeon for  ramulus. Arch. Microbiol., 178, 71–74.
                                      +
                  the regeneration of both NAD and  58. Jia, B., Park, S.C., Lee, S., Pham, B.P.,
                      +
                  NADP . Biotechnol. Bioeng., 109, 53–62.  Yu, R., Le, T.L., Han, S.W., Yang,
               49. Riebel, B., Gibbs, P.R., Wellborn, W.B.,  J.K., Choi, M.S., Baumeister, W., and
                  and Bommarius, A.S. (2002) Cofactor  Cheong, G.W. (2008) Hexameric ring
                                +
                  regeneration of NAD from NADH:  structure of a thermophilic archaeon
                  novel water-forming NADH oxidases.  NADH oxidase that produces predomi-
                  Adv.Synth.Catal., 344, 1156–1169.  nantly H O. FEBS J., 275, 5355–5366.
                                                        2
               50. Yu, J., Bryant, A.P., Marra, A., Lonetto,  59. Yang, X. and Ma, K. (2005) Purifica-
                  M.L., Ingraham, K.A., Chalker, A.F.,  tion and characterization of an NADH
                  Holmes, D.J., Holden, D., Rosenberg,  oxidase from extremely thermophilic
                  M., and McDevitt, D. (2001) Character-  anaerobic bacterium Thermotoga hypogea.
                  ization of the Streptococcus pneumoniae  Arch. Microbiol., 183, 331–337.
                  NADH oxidase that is required for  60. Yang, X. and Ma, K. (2007) Character-
                  infection. Microbiology, 147, 431–438.  ization of an exceedingly active NADH
               51. Higuchi, M., Shimada, M., Yamamoto,  oxidase from the anaerobic hyper-
                  Y., Hayashi, T., and Kamio, Y. (1993)  thermophilic bacterium Thermotoga
                  Identification of two distinct NADH oxi-  maritima. J. Bacteriol., 189, 3312–3317.
                  dases corresponding to H O -forming  61. Kengen, S.W., van der Oost, J., and
                                     2
                                   2
                  oxidase and H O-forming oxidase  de Vos, W.M. (2003) Molecular char-
                            2
                  induced in Streptococcus mutans. J. Gen.  acterization of H O -forming NADH
                                                               2
                                                              2
                  Microbiol., 139, 2343–2351.     oxidases from Archaeoglobus fulgidus.
               52. Gao, H., Tiwari, M.K., Kang, Y.C., and  Eur. J. Biochem., 270, 2885–2894.
                  Lee, J.-K. (2012) Characterization of  62. Kawasaki, S., Ishikura, J., Chiba, D.,
                  H O-forming NADH oxidase from   Nishino, T., and Niimura, Y. (2004)
                   2
                  Streptococcus pyogenes and its application  Purification and characterization of
                  in l-rare sugar production. Bioorg. Med.  an H O-forming NADH oxidase from
                                                      2
                  Chem. Lett., 22, 1931–1935.     Clostridium aminovalericum: existence
               53. Hummel, W., Kuzu, M., and Geueke, B.  of an oxygen-detoxifying enzyme in
                  (2003) An efficient and selective enzy-  an obligate anaerobic bacteria. Arch.
                  matic oxidation system for the synthesis  Microbiol., 181, 324–330.
                  of enantiomerically pure D-tert-leucine.  63. Park, J.T., Hirano, J.-I., Thangavel, V.,
                  Org. Lett., 5, 3649–3650.       Riebel, B., and Bommarius, A.S. (2011)
               54. Hummel, W. and Riebel, B. (2003)  NAD(P)H oxidase V from Lactobacillus
                  Isolation and biochemical characteri-  plantarum (NoxV) displays enhanced
                  zation of a new NADH oxidase from  operational stability even in absence
                  Lactobacillus brevis. Biotechnol. Lett., 25,  of reducing agents. J. Mol. Catal. B:
                  51–54.                          Enzym., 71, 159–165.
               55. Case, C.L., Rodriguez, J.R., and  64. ¨ Odman, P., Wellborn, W.B., and
                  Mukopadhyay, B. (2009) Character-  Bommarius, A.S. (2004) An enzy-
                  ization of an NADH oxidase of the  matic process to α-ketoglutarate from
                  flavin-dependent disulfide reductase  L-glutamate: the coupled system
                  family from Methanocaldococcus jan-  L-glutamate dehydrogenase/NADH
                  naschii. Microbiology, 155, 69–79.  oxidase. Tetrahedron: Asymmetry, 15,
               56. Hirano, J.-I., Miyamoto, K., and Ohta,  2933–2937.
                  H. (2008) Purification and characteri-  65. Geueke, B., Riebel, B., and Hummel, W.
                  zation of thermostable H O -forming  (2003) NADH oxidase from Lactobacillus
                                   2  2
   60   61   62   63   64   65   66   67   68   69   70