Page 64 - Cascade biocatalysis
P. 64
40 2 New Trends in the In Situ Enzymatic Recycling of NAD(P)(H) Cofactors
cofactor regeneration. Biochemistry, 51, (2003) Practical applications of hydro-
4263–4270. genase I from Pyrococcus furiosus for
31. Torres Pazmi˜ no, D.E., Snajdrova, R., NADPH generation and regeneration. J.
Baas, B.-J., Ghobrial, M., Mihovilovic, Mol. Catal. B: Enzym., 24–25, 39–52.
M.D., and Fraaije, M.W. (2008) Self- 39. Wong, C.-H. and Whitesides, G.M.
sufficient Baeyer–Villiger monooxyge- (1981) Enzyme-catalyzed organic syn-
nases: effective coenzyme regeneration thesis: NAD(P)H cofactor regeneration
for biooxygenation by fusion engi- by using glucose 6-phosphate and the
neering. Angew. Chem. Int. Ed., 47, glucose-6-phosphate dehydrogenase
2275–2278. from Leuconostoc mesenteroides. J. Am.
32. Torres Pazmi˜ no, D.E., Riebel, A., de Chem. Soc., 103, 4890–4899.
Lange, J., Rudroff, F., Mihovilovic, 40. Hartog, A.F., van Herk, T., and Wever,
M.D., and Fraaije, M.W. (2009) Efficient R. (2011) Efficient regeneration of
biooxidations catalyzed by a new gener- NADPH in a 3-enzyme cascade
ation of self-sufficient Baeyer–Villiger reaction by in situ generation of glu-
cose 6-phosphate from glucose and
monooxygenases. ChemBioChem, 10,
pyrophosphate. Adv.Synth.Catal., 353,
2595–2598.
2339–2344.
33. Lauterbach, L., Lenz, O., and Vincent,
41. Stampfer, W., Kosjek, B., Faber, K., and
K.A. (2013) H -driven cofactor regen-
2
+
eration with NAD(P) -reducing Kroutil, W. (2003) Biocatalytic asym-
hydrogenases. FEBS J., 280, 3058–3068. metric hydrogen transfer employing
34. Evans, R.M., Parkin, A., Roessler, Rhodococcus ruber DSM 44541. J. Org.
Chem., 68, 402–406.
M.M., Murphy, B.J., Adamson, H.,
42. Goldberg, K., Edegger, K., Kroutil, W.,
Lukey, M.J., Sargent, F., Volbeda, A.,
and Liese, A. (2006) Overcoming the
Fontecilla-Camps, J.C., and Armstrong,
thermodynamic limitation in asymmet-
F.A. (2013) Principles of sustained ric hydrogen transfer reactions catalyzed
enzymatic hydrogen oxidation in by whole cells. Biotechnol. Bioeng., 95,
the presence of oxygen − the cru- 192–198.
cial influence of high potential Fe-S
43. Calvin, S.J., Mangan, D., Miskelly, I.,
clusters in the electron relay of [NiFe]-
Moody, T.S., and Stevenson, P.J. (2012)
hydrogenases. J. Am. Chem. Soc., 135,
Overcoming equilibrium issues with
2694–2707.
carbonyl reductase enzymes. Org. Process
35. Payen, B., Segui, M., Monsan, P.,
Res. Dev., 16, 82–86.
Schneider, K., Friedrich, C.G., and
44. Goldberg, K., Schroer, K., L¨ utz, S., and
Schlegel, H.G. (1983) Use of cytoplasmic
Liese, A. (2007) Biocatalytic ketone
hydrogenase from Alcaligenes eutrophus
reduction – a powerful tool for the
for NADH regeneration. Biotechnol. Lett.,
production of chiral alcohols – part I:
5, 463–468.
processes with isolated enzymes. Appl.
36. Lauterbach, L., Idris, Z., Vincent, K.A., Microbiol. Biotechnol., 76, 237–248.
and Lenz, O. (2011) Catalytic properties 45. Kara, S., Spickermann, D., Schrittwieser,
of the isolated diaphorase fragment of J.H., Leggewie, C., van Berkel, W.J.H.,
+
the NAD -reducing [NiFe]-hydrogenase Arends, I.W.C.E., and Hollmann, F.
from Ralstonia eutropha. PLoS One, 6, (2013) More efficient redox biocatalysis
e25939. by utilising 1,4-butanediol as a ‘smart
37. Reeve, H.A., Lauterbach, L., Ash, P.A., cosubstrate’. Green Chem., 15, 330–335.
Lenz, O., and Vincent, K.A. (2012) A 46. Hensel, R., Mayr, U., Fujiki, H., and
modular system for regeneration of Kandler, O. (1977) Comparative studies
NAD cofactors using graphite parti- of lactate dehydrogenases in lactic acid
cles modified with hydrogenase and bacteria. Eur. J. Biochem., 80, 83–92.
diaphorase moieties. Chem. Commun., 47. Richter, N., Zienert, A., and Hummel,
48, 1589–1591. W. (2011) A single-point mutation
38. Mertens, R., Greiner, L., van den Ban, enables lactate dehydrogenase from
+
E.C.D., Haaker, H.B.C.M., and Liese, A. Bacillus subtilis to utilize NAD and