Page 399 - Chemical process engineering design and economics
P. 399
Reactor Design 379
coolant is chilled water. Size the reactor, determine the heat exchanger type and
area, and calculate the mixer power.
Data
3
3
Methanol volumetric flow rate 800ft /h(22.7m /h)
3
Propylene oxide volumetric flow rate 800 fWh (22.7 m /h)
3
3
Acid solution volumetric flow rate 4000ft /h(l 13 m /h)
Feed inlet temperature 75°F(23.9°C)
Reaction temperature 100°F(37.8°C)
Chilled water inlet temperature 5°C(41°F)
Chilled water exit temperature 15°C(59°F)
Required propylene oxide conversion 0.37
Thermodynamic properties are summarized in Table 7.1.1, and reaction
properties are given below. Fogler [16] estimated the heat capacity for propylene
glycol using a rale-of-thumb. The rule states that the majority of low-molecular-
weight, oxygen-containing organic liquids have a heat capacity of 0.6 cal/g °F
±15%(35Btu/lbmol-°F)
Reaction Properties
Pre-exponential factor, A 16.96 xlO 12 h' 1
Activation energy, E 32,400 Btu/lbmol (75,330 kJ/kgmol)
Follow the calculation procedure outlined in Table 7.5. Using the equations
listed in Table 7.4, first calculate the reaction volume. Then select a standard reac-
tion volume (rated capacity) from Table 7.3. The actual capacity (reactor volume)
Table 7.1.1 Thermodynamic Properties for Proplyene Glycol Synthesis
Component Molecular Density 3 Heat Capacity 13 Standard
Weight g/cm 3 Btu/lbmol-°F Enthalpy
of Reaction c>d
Btu/lbmol
Propylene Oxide 58.08 0.859 35 -66,600
Water 18.02 0.9941 18 -123,000
Propylene Glycol 76.11 1.036 46 -226,000
Methanol 32.04 0.7914 19.5
a) To convert g/cm to kg/m multiply by 1000.
b) To convert Btu/lbmol-°F to kJ/kgmol-°K multiply by 4.187.
c) At 25 °C (77 °F)
d) To convert Btu/lbmol to kJ/kgmol multiply by 2.325.
Copyright © 2003 by Taylor & Francis Group LLC