Page 113 - Circuit Analysis II with MATLAB Applications
P. 113

Higher Order Delta Functions



                                vt                             vt
                                      V
                                                     –  t + 5
                                 3


                                 2                                –  t + 6

                                  1
                              1   0       1     2   3      4     5   6     7

                                                                              ts

                                     1
                                           2t
                                      2

                            Figure 3.22. Equations for the linear segments of Figure 3.21
                        vt   =  2tu t +   0  1 –  2tu t –  1 –  2u t –  1 –  2u t –  2 –  tu t –  2








                                                                               0
                                              0
                                                                     0
                                                         0



                                + 5u t –   0  2 +  tu t – 4 – 5u t – 4 +  u t –  4 –  u t –  5





                                                                    0
                                               0
                                                          0
                                                                              0
                                 tu t – –  0  5 +  6u t – 5 +  tu t –  7 –  6u t –  7






                                                                    0
                                                         0
                                              0
        or
                           vt   =  2tu t +   0  1 +  –    2t + 2 u t –  1 +  –    t +  3 u t –  2






                                                        0
                                                                          0
                                   +  t –  4 u t –      0  4 +  –    t +  5 u t –  5 +     t –  6 u t –  7







                                                                             0
                                                             0
        b. The derivative of vt    is
                       dv    2u t +   1 + 2tG t +  1 – 2u t –  1 +  –    2t +  2 G        t –  1
                       ------ =





                        dt      0                     0
                                                                                                (3.53)
                               u t –  –  0  2 +  –    t +  3 G        t – 2 +  u t –  4 +     t –  4 G        t – 4




                                                           0
                               u t –  –  0  5 +  –    t +  5 G        t – 5 +  u t –  7 +     t –  6 G        t –  7




                                                           0
           From the given waveform, we observe that discontinuities occur only at  t =  – 1 ,  t =  2 , and
           t =  7  . Therefore, G t –   1 =  0  , G t –   4 =  0  , and G t –   5 =  0  , and the terms that contain these



           delta functions vanish. Also, by application of the sampling property,
                                                                         –
                                    2tG t +  1 =  ^  2t  `  G     t +  1 =  2G t +  1



                                                    t =  – 1

                               –    t +  3 G        t –  2 =  –    t +  3   ^  `  G     t – 2 =  G     t –  2

                                                         t =  2

                                   t –  6 G        t –  7 =     t –  6   ^  `  G     t – 7 =  G     t –  7

                                                        t =  7
           and by substitution into (3.53), we get
        Circuit Analysis II with MATLAB Applications                                            3-17
        Orchard Publications
   108   109   110   111   112   113   114   115   116   117   118