Page 53 - Circuit Analysis II with MATLAB Applications
P. 53

Solutions to Exercises


        1.
                                                        i t
                                                         L
                                                                `
                                                  10 :      0.2 H   +
                                             +                        v t
                                                                       C
                                   100u t   V       i         8mF
                                        0

                                               di
                                         Ri +  L----- +  v =  100  t ! 0
                                               dt   C
                               dv
                                 C
           and since i =  i =  C-------- , the above becomes
                         C
                               dt
                                                       2
                                             dv      d v
                                                        C
                                               C
                                         RC -------- +  LC ---------- +  v =  100
                                             dt       dt 2   C
                                           2
                                          d v    R dv C  1      100
                                             C
                                          ---------- +  --- -------- +  -------v =  ---------
                                                            C
                                           dt 2  L dt   LC       LC
                                 2
                                d v    10 dv         1                100
                                   C
                                            C
                                ---------- +  ------- -------- +  --------------------------------- v =  ---------------------------------
                                                             C
                                 dt 2  0.2 dt  0.2 u  8 u  10 – 3  0.2 u  8 u  10 – 3
                                         2
                                        d v      dv C
                                           C
                                        ---------- + 50 -------- + 625 v =  62500
                                                            C
                                         dt 2     dt
           From the characteristic equation
                                               2
                                              s +  50s + 625 =  0
           we get s =  s =  – 25  (critical damping) and D =  R2L =  25
                                                             e
                   1
                                                       S
                        2
           The total solution is
                                                  – D t                – 25 t
                                                   S
                        v t   =  v + v Cn  =  100 +  e     k +  k t =  100 + e     k +  k t      (1)

                                 Cf
                                                           2
                                                                                2
                                                                            1
                                                       1
                         C
                                                                                           0

           With the first initial condition v 0   C     =  0  the above expression becomes 0 =  100 +  e k +  0     or
                                                                                              1
           k =  – 100  and by substitution into (1) we get
            1
                                       v t   =  100 +  e – 25 t    k t –  100      (2)
                                                           2
                                        C

           To evaluate  k 2   we make use of the second initial condition  i 0   L     =  0   and since  i =  i C , and
                                                                                           L
                             dt
           i =  i =  Cdv      C  e     , we differentiate (2) using the following MATLAB code:
                C
        1-41                                                 Circuit Analysis II with MATLAB Applications
                                                                                   Orchard Publications
   48   49   50   51   52   53   54   55   56   57   58