Page 56 - Circuit Analysis II with MATLAB Applications
P. 56

Chapter 1  Second Order Circuits

           s=[1  0.8  9.16]; roots(s)

           ans =
             -0.4000 + 3.0000i
             -0.4000 - 3.0000i

           we find that s =  –  0.4 +  j3  and s =  – 0.4 –  j3 . Therefore, the total solution is
                        1
                                           2
                                                             – D t
                                                              S
                                 v t   =  v + v Cn  =  100 +  ke  cos     Z nS  t +  M
                                  C
                                          Cf
            where
                                              D =   R2L =    0.4
                                                      e
                                                S
            and
                                                              2
                                      2
                                                         2
                                          2
                                                                        –
                            Z    =  Z –  D =    1LC –   R e  4L =  9.16 0.16 =   3
                                                  e
                              nS      0   S
            Thus,
                                      v t   =  100 +  ke – 0.4t cos    3t +  M      (1)
                                       C

           and with the initial condition v 0   C     =  0  we get 0 =  100 +  kcos    0 +  M     or
                                              kcos M =  – 100   (2)
           To evaluate   and   we differentiate (1) with MATLAB and evaluate it at t =  . 0
                       k
                             M
           syms t  k  phi; v0=100+k*exp( 0.4*t)*cos(3*t+phi); v1=diff(v0)
           v1 =

             -2/5*k*exp(-2/5*t)*cos(3*t+phi)-3*k*exp(-2/5*t)*sin(3*t+phi)
            Thus,
                                dv           – 0.4t              – 0.4t
                                  C
                                -------- =  – 0.4k e  cos    3t +  M –  3ke  sin    3t +  M

                                 dt
                                         dv
                                           C
                                         --------  =  – 0.4kcos –  3ksin M
                                                           M
                                         dt  t =  0
            and with (2)
                                           dv
                                           -------- C  =  40 3ksin M   (3)
                                                        –
                                           dt
                                               t =  0
                 dv     i    i
                    C
                         C
            Also,  -------- =  ---- =  ---- L  and at t =  0
                  dt    C    C

                                           dv        i 0
                                                      L
                                             C
                                           --------  =  --------------- =  0   (4)
                                            dt         C
                                               t =  0
        1-44                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   51   52   53   54   55   56   57   58   59   60   61