Page 10 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 10

CONTENTS                                                       ix

                    9.1.3  Feature extraction                            312
                    9.1.4  Feature selection                             314
                    9.1.5  Complex classifiers                           316
                    9.1.6  Conclusions                                   319
               9.2  Time-of-flight estimation of an acoustic tone burst  319
                    9.2.1  Models of the observed waveform               321
                    9.2.2  Heuristic methods for determining the ToF     323
                    9.2.3  Curve fitting                                 324
                    9.2.4  Matched filtering                             326
                    9.2.5  ML estimation using covariance models
                           for the reflections                           327
                    9.2.6  Optimization and evaluation                   332
               9.3  Online level estimation in an hydraulic system       339
                    9.3.1  Linearized Kalman filtering                   341
                    9.3.2  Extended Kalman filtering                     343
                    9.3.3  Particle filtering                            344
                    9.3.4  Discussion                                    350
               9.4  References                                           352

            Appendix A   Topics Selected from Functional Analysis        353
               A.1 Linear spaces                                         353
                    A.1.1 Normed linear spaces                           355
                    A.1.2 Euclidean spaces or inner product spaces       357
               A.2 Metric spaces                                         358
               A.3 Orthonormal systems and Fourier series                360
               A.4 Linear operators                                      362
               A.5 References                                            366


            Appendix B Topics Selected from Linear Algebra
                         and Matrix Theory                               367
               B.1 Vectors and matrices                                  367
               B.2 Convolution                                           370
               B.3 Trace and determinant                                 372
               B.4 Differentiation of vector and matrix functions        373
               B.5 Diagonalization of self-adjoint matrices              375
               B.6 Singular value decomposition (SVD)                    378
               B.7 References                                            381


            Appendix C   Probability Theory                              383
               C.1 Probability theory and random variables               383
                    C.1.1 Moments                                        386
   5   6   7   8   9   10   11   12   13   14   15