Page 8 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 8

CONTENTS                                                      vii

                    5.2.2  Gaussian distribution, covariance matrix
                           unknown                                       144
                    5.2.3  Gaussian distribution, mean and covariance
                           matrix both unknown                           145
                    5.2.4  Estimation of the prior probabilities         147
                    5.2.5  Binary measurements                           148
               5.3  Nonparametric learning                               149
                    5.3.1  Parzen estimation and histogramming           150
                    5.3.2  Nearest neighbour classification              155
                    5.3.3  Linear discriminant functions                 162
                    5.3.4  The support vector classifier                 168
                    5.3.5  The feed-forward neural network               173
               5.4  Empirical evaluation                                 177
               5.5  References                                           181
               5.6  Exercises                                            181

            6 Feature Extraction and Selection                           183
               6.1  Criteria for selection and extraction                185
                    6.1.1  Inter/intra class distance                    186
                    6.1.2  Chernoff–Bhattacharyya distance               191
                    6.1.3  Other criteria                                194
               6.2  Feature selection                                    195
                    6.2.1  Branch-and-bound                              197
                    6.2.2  Suboptimal search                             199
                    6.2.3  Implementation issues                         201
               6.3  Linear feature extraction                            202
                    6.3.1  Feature extraction based on the
                           Bhattacharyya distance with Gaussian
                           distributions                                 204
                    6.3.2  Feature extraction based on inter/intra
                           class distance                                209
               6.4  References                                           213
               6.5  Exercises                                            214

            7 Unsupervised Learning                                      215
               7.1 Feature reduction                                     216
                    7.1.1  Principal component analysis                  216
                    7.1.2  Multi-dimensional scaling                     220
               7.2  Clustering                                           226
                    7.2.1  Hierarchical clustering                       228
                    7.2.2  K-means clustering                            232
   3   4   5   6   7   8   9   10   11   12   13