Page 9 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 9

viii                                                  CONTENTS

                    7.2.3  Mixture of Gaussians                          234
                    7.2.4  Mixture of probabilistic PCA                  240
                    7.2.5  Self-organizing maps                          241
                    7.2.6  Generative topographic mapping                246
               7.3  References                                           250
               7.4  Exercises                                            250


            8 State Estimation in Practice                               253
               8.1  System identification                                256
                    8.1.1  Structuring                                   256
                    8.1.2  Experiment design                             258
                    8.1.3  Parameter estimation                          259
                    8.1.4  Evaluation and model selection                263
                    8.1.5  Identification of linear systems with
                           a random input                                264
               8.2  Observability, controllability and stability         266
                    8.2.1  Observability                                 266
                    8.2.2  Controllability                               269
                    8.2.3  Dynamic stability and steady state solutions  270
               8.3  Computational issues                                 276
                    8.3.1  The linear-Gaussian MMSE form                 280
                    8.3.2  Sequential processing of the measurements     282
                    8.3.3  The information filter                        283
                    8.3.4  Square root filtering                         287
                    8.3.5  Comparison                                    291
               8.4  Consistency checks                                   292
                    8.4.1  Orthogonality properties                      293
                    8.4.2  Normalized errors                             294
                    8.4.3  Consistency checks                            296
                    8.4.4  Fudging                                       299
               8.5  Extensions of the Kalman filter                      300
                    8.5.1  Autocorrelated noise                          300
                    8.5.2  Cross-correlated noise                        303
                    8.5.3  Smoothing                                     303
               8.6  References                                           306
               8.7 Exercises                                             307

            9 Worked Out Examples                                        309
               9.1  Boston Housing classification problem                309
                    9.1.1  Data set description                          309
                    9.1.2  Simple classification methods                 311
   4   5   6   7   8   9   10   11   12   13   14