Page 7 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 7

vi                                                    CONTENTS

                    3.1.2  MAP estimation                                 55
                    3.1.3  The Gaussian case with linear sensors          56
                    3.1.4  Maximum likelihood estimation                  57
                    3.1.5  Unbiased linear MMSE estimation                59
               3.2  Performance of estimators                             62
                    3.2.1  Bias and covariance                            63
                    3.2.2  The error covariance of the unbiased linear
                           MMSE estimator                                 67
               3.3  Data fitting                                          68
                    3.3.1  Least squares fitting                          68
                    3.3.2  Fitting using a robust error norm              72
                    3.3.3  Regression                                     74
               3.4  Overview of the family of estimators                  77
               3.5  Selected bibliography                                 79
               3.6  Exercises                                             79

            4 State Estimation                                            81
               4.1  A general framework for online estimation             82
                    4.1.1  Models                                         83
                    4.1.2  Optimal online estimation                      86
               4.2  Continuous state variables                            88
                    4.2.1  Optimal online estimation in linear-Gaussian
                           systems                                        89
                    4.2.2  Suboptimal solutions for nonlinear
                           systems                                       100
                    4.2.3  Other filters for nonlinear systems           112
               4.3  Discrete state variables                             113
                    4.3.1  Hidden Markov models                          113
                    4.3.2  Online state estimation                       117
                    4.3.3  Offline state estimation                      120
               4.4  Mixed states and the particle filter                 128
                    4.4.1  Importance sampling                           128
                    4.4.2  Resampling by selection                       130
                    4.4.3  The condensation algorithm                    131
               4.5  Selected bibliography                                135
               4.6 Exercises                                             136

            5 Supervised Learning                                        139
               5.1  Training sets                                        140
               5.2  Parametric learning                                  142
                    5.2.1  Gaussian distribution, mean unknown           143
   2   3   4   5   6   7   8   9   10   11   12