Page 113 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 113

102                                            STATE ESTIMATION

                                         ¼  ¼
            By interpreting the term (I   F(x))x as a constant control input, and
                                              ¼      ¼ ¼
            by compensating the offset term h(x)   H(x)x in the measurement
            vector, these equations become equivalent to (4.11) and (4.25). This
            allows the direct application of the DKF as given in (4.28) and (4.27).
              Many practical implementations of the discrete Kalman filter are
            inherently linearized Kalman filters because physical processes are sel-
            dom exactly linear, and often a linear model is only an approximation of
            the real process.

              Example 4.4   The swinging pendulum
              The swinging pendulum from Example 4.2 is described by (4.23):

                                        €
                                                               _

                      maðtÞ cos  ðtÞþ mR ðtÞ¼ mg sin  ðtÞ   mk     ðtÞ
                                                            R
              This equation is transformed in the linear model given in (4.24).
              In fact, this is a linearized model derived from:


               x 1 ði þ 1Þ¼ x 1 ðiÞþ  x 2 ðiÞ
                                               k                       ð4:35Þ
               x 2 ði þ 1Þ¼ x 2 ðiÞ   g sin x 1 ðiÞþ  x 2 ðiÞþ aðiÞ cos x 1 ðiÞ
                                R              R

                                              ¼
              The equilibrium for a(i) ¼ 0is x ¼ 0. The linearized model is
              obtained by equating sin x 1 (i) ffi x 1 (i) and cos x 1 (i) ffi 1.

              Example 4.5 A linearized model for volume density estimation
              In Section 4.1.1 we introduced the nonlinear, non-Gaussian problem
              of the volume density estimation of a mix in the process industry
              (Example 4.1). The model included a discrete state variable to
              describe the on/off regulation of the input flow. We will now replace
              this model by a linear feedback mechanism:


             Vði þ 1Þ’ VðiÞþ    ðV 0   VðiÞÞ þ w 1 ðiÞþ f  2
                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                        þw 2 ðiÞ  c  VðiÞ=V ref
             Dði þ 1Þ’ DðiÞ

                            ð  ðV 0   VðiÞÞ þ w 1 ðiÞÞDðiÞ  f þ w 2 ðiÞ 1   DðiÞÞ
                                                                  ð
                                                         2

                                                  VðiÞ
                                                                       ð4:36Þ
   108   109   110   111   112   113   114   115   116   117   118