Page 247 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 247

236                                     UNSUPERVISED LEARNING

            the K Gaussians generated the corresponding object z n . The x n are called
            indicator variables. They use position coding to indicate the Gaussian
            associated with z n . In other words, if z n is generated by the k-th Gaus-
            sian, then x n,k ¼ 1 and all other elements in x n are zero. With that, the
            prior probability that x n,k ¼ 1is   k .
              In this case, the complete log-likelihood of C can be written as:


                             N S              N S
                            Y                 Y
                LðYjCÞ¼ ln     pðz n ; x n jCÞ¼ ln  pðz n jx n ; CÞpðx n jCÞ
                            n¼1               n¼1
                                K
                             N S
                            Y Y
                        ¼ ln      ½Nðz n jm ; C k Þ  k Š x n;k         ð7:16Þ
                                         k
                            n¼1 k¼1
                           K  N S
                          X X
                        ¼        x n;k ln Nðz n jm ; C k Þþ x n;k ln   k
                                             k
                          k¼1 n¼1
            Under the condition of a given Z, the probability density p(YjZ, C) ¼
            p(X, ZjZ, C) can be replaced with the marginal probability P(XjZ, C).
            Therefore in (7.15), we have:

                                      Z
                                                           ðiÞ
                        E½LðYjCÞjZм    ð ln pðYjCÞÞpðYjZ; C ÞdY
                                                                       ð7:17Þ
                                      X
                                                         ðiÞ
                                    ¼     LðYjCÞPðXjZ; C Þ
                                       X
            But since in (7.16) L(YjC) is linear in X, we conclude that

                                E½LðYjCÞjZм LðX; ZjCÞ                 ð7:18Þ

            where X is the expectation of the missing data under the condition of Z
                 (i)
            and C :

                                ðiÞ             ðiÞ
                  x x n;k ¼ E½x n;k jz n ; C м Pðx n;k jz n ; C Þ

                                                       ðiÞ
                                ðiÞ       ðiÞ    N z n jm ; C ðiÞ    ðiÞ
                      pðz n jx n;k ; C ÞPðx n;k jC Þ   k    k   k      ð7:19Þ
                    ¼                        ¼
                                   ðiÞ          K
                             pðz n jC Þ         P        ðiÞ  ðiÞ  ðiÞ
                                                  N z n jm ; C j    j
                                                         j
                                                j¼1
            The variable   x n,k is called the ownership because it indicates to what
                        x
            degree sample z n is attributed to the k-th component.
   242   243   244   245   246   247   248   249   250   251   252