Page 71 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 71

60                                       PARAMETER ESTIMATION

            estimator, i.e. a quadratic cost function. The constraint results in an
            estimator that is not as good as the (unconstrained) MMSE estimator,
            but it requires only knowledge of moments up to the order two, i.e.
            expectation vectors and covariance matrices.
              The starting point is the overall risk expressed in (3.11). Together with
            the quadratic cost function we have:


                      Z Z
                                       T
                  R ¼      ðKz þ a   xÞ ðKz þ a   xÞpðxjzÞpðzÞdxdz     ð3:27Þ
                       z  x
            The optimal unbiased linear MMSE estimator is found by minimizing
            R with respect to K and a. Hence we differentiate R with respect to a and
            equate the result to zero:

                         dR   Z Z
                            ¼      ð2a þ 2Kz   2xÞpðxjzÞpðzÞdxdz
                         da    z  x

                            ¼ 2a þ 2Km   2m ¼ 0
                                       z
                                            x
            yielding:

                                      a ¼ m   K m z                    ð3:28Þ
                                           x
            with m and m the expectations of x and z.
                        z
                  x
              Substitution of a back into (3.27), differentiation with respect to K,
            and equating the result to zero (see also Appendix B.4):

                 Z Z
                                          T
             R ¼      ðKðz   m Þ ðx   m ÞÞ ðKðz   m Þ  ðx   m ÞÞpðxjzÞpðzÞdxdz
                                                            x
                              z
                                                  z
                                       x
                   z  x
                            T

               ¼ trace KC z K þ C x   2KC zx
            dR
               ¼ 2KC z   2C xz ¼ 0
            dK
            yields:
                                       K ¼ C xz C  1                   ð3:29Þ
                                               z
                                                                       T
            C z is the covariance matrix of z, and C xz ¼ E[(x   m )(z   m ) ] the
                                                                     z
                                                              x
            cross-covariance matrix between x and z.
   66   67   68   69   70   71   72   73   74   75   76