Page 66 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 66

BAYESIAN ESTIMATION                                           55

            The conditional risk of this solution is the sum of the variances of the
            estimated parameters:


                              Z
                                              T
                x
                                 x
                                                x
              Rð^ x MMSE ðzÞjzÞ¼  ð^ x MMSE ðzÞ  xÞ ð^ x MMSE ðzÞ  xÞpðxjzÞdx
                               x
                              Z
                                           T
                            ¼   ðE½xjzŠ  xÞ ðE½xjzŠ  xÞpðxjzÞdx        ð3:14Þ
                               x
                              M 1
                              X
                            ¼    Var½x m jzŠ
                              m¼0
            Hence the name ‘minimum variance estimator’.



            3.1.2  MAP estimation


            If the uniform cost function is chosen, the conditional risk (3.9)
            becomes:


                                      Z
                                x
                                                     x
                              Rð^ xjzÞ¼  pðxjzÞdx   pð^ xjzÞ
                                       x                               ð3:15Þ
                                            x
                                    ¼ 1   pð^ xjzÞ
            The estimate which now minimizes the risk is called the maximum a
            posterior (MAP) estimate:


                                ^ x x MAP ðzÞ¼ argmaxfpðxjzÞg          ð3:16Þ
                                             x

            This solution equals the mode (maximum) of the posterior probability. It
            can also be written entirely in terms of the prior probability densities and
            the conditional probabilities:


                                  pðzjxÞpðxÞ
                ^ x x MAP ðzÞ¼ argmax         ¼ argmaxfpðzjxÞpðxÞg     ð3:17Þ
                             x       pðzÞ          x

            This expression is similar to the one of MAP classification; see (2.12).
   61   62   63   64   65   66   67   68   69   70   71