Page 66 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 66
BAYESIAN ESTIMATION 55
The conditional risk of this solution is the sum of the variances of the
estimated parameters:
Z
T
x
x
x
Rð^ x MMSE ðzÞjzÞ¼ ð^ x MMSE ðzÞ xÞ ð^ x MMSE ðzÞ xÞpðxjzÞdx
x
Z
T
¼ ðE½xjz xÞ ðE½xjz xÞpðxjzÞdx ð3:14Þ
x
M 1
X
¼ Var½x m jz
m¼0
Hence the name ‘minimum variance estimator’.
3.1.2 MAP estimation
If the uniform cost function is chosen, the conditional risk (3.9)
becomes:
Z
x
x
Rð^ xjzÞ¼ pðxjzÞdx pð^ xjzÞ
x ð3:15Þ
x
¼ 1 pð^ xjzÞ
The estimate which now minimizes the risk is called the maximum a
posterior (MAP) estimate:
^ x x MAP ðzÞ¼ argmaxfpðxjzÞg ð3:16Þ
x
This solution equals the mode (maximum) of the posterior probability. It
can also be written entirely in terms of the prior probability densities and
the conditional probabilities:
pðzjxÞpðxÞ
^ x x MAP ðzÞ¼ argmax ¼ argmaxfpðzjxÞpðxÞg ð3:17Þ
x pðzÞ x
This expression is similar to the one of MAP classification; see (2.12).