Page 96 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 96

A GENERAL FRAMEWORK FOR ONLINE ESTIMATION                     85

              manipulations the following system of differential equations
              appears:


                                                 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                             _
                            V VðtÞ¼ f 1 ðtÞþ f 2 ðtÞ  c  VðtÞ=V ref
                                                                        ð4:2Þ
                             _     f 2 ðtÞð1   DðtÞÞ   f 1 ðtÞDðtÞ
                            D DðtÞ¼
                                             VðtÞ
                                        2
            A discrete time approximation (notation: V(i)   V(i ), D(i)   D(i ),
            and so on) is:


                                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                   Vði þ 1Þ’ VðiÞþ   f 0 xðiÞþ f 2 ðiÞ  c VðiÞ=V ref

                                      f 0 xðiÞDðiÞ  f 2 ðiÞð1   DðiÞÞ
                   Dði þ 1Þ’ DðiÞ                                       ð4:3Þ
                                                VðiÞ

                   xði þ 1Þ¼ xðiÞ^:ðVðiÞ > V high Þ _ðVðiÞ < V low Þ

              This equation is of the type x(i þ 1) ¼ f(x(i), u(i), w(i)) with
                                  T
              x(i) ¼ [ V(i) D(i) x(i)] . The elements of the vector u(i) are the
              known input variables, i.e. the non-random part of f 2 (i). The vector
              w(i) contains the random input, i.e. the random part of f 2 (i). The
              probability density of x(i þ 1) depends on the present state x(i), but
              not on the past states.
                Figure 4.1 shows a realization of the process. Here, the substance is
              added to the volume in chunks with an average volume of 10 litre and
              at random points in time.

              If the transition probability density p(x(i þ 1)jx(i)) is known together
            with the initial probability density p(x(0)), then the probability density
            at an arbitrary time can be determined recursively:


                           Z
              pðxði þ 1ÞÞ ¼      pðxði þ 1ÞjxðiÞÞpðxðiÞÞdx for i ¼ 0; 1; .. .  ð4:4Þ
                            xðiÞ2X



            2                            _
             The approximation that is used here is V(t)  ’ V((i þ 1) )   V(i ). The approximation is
                                        V
            only close if   is sufficiently small. Other approximations may be more accurate, but this
            subject is outside the scope of the book.
   91   92   93   94   95   96   97   98   99   100   101