Page 101 - Complementarity and Variational Inequalities in Electronics
P. 101

92  Complementarity and Variational Inequalities in Electronics


                                         j
                                            j
                           and v = U + u,e  e ∈ D( ) (1 ≤ j ≤ n) in (4.51) to get
                                           0 ≤ W j u j +   j (U j + u j ) −   j (U j ).  (4.56)

                           Setting v = 0in (4.51), we also get
                                                   0 ≥ w,u +  (u),

                           and thus
                                                    n

                                                0 ≥   [w j u j +   j (u j )].        (4.57)
                                                   j=1
                           We prove in the same way that
                                                    n

                                                0 ≥   [W j U j +   j (U j )].        (4.58)
                                                   j=1
                           Using (4.53) and (4.54) together with (4.57) and (4.58), we see that, for all
                           integers 1 ≤ j ≤ n,

                                         w j u j +   j (u j ) = 0,W j U j +   j (U j ) = 0.
                           Then, for all integers 1 ≤ j ≤ n,

                             (u − U) j (M(u − U)) j = (u j − U j )(w j − W j )
                                                = u j w j + U j W j − u j W j − U j w j
                                                ≤−  j (u j ) −   j (U j ) +   j (U j + u j ) −   j (U j )
                                                  +   j (u j + U j ) −   j (u j )
                                                = 2  j (u j + U j ) − 2(  j (u j ) +   j (U j )).

                           Note that
                                                       1    1           1     1
                                  2  j (u j + U j ) = 2  j (2( u j + U j )) = 4  j ( u j + U j )
                                                       2    2           2     2
                                              ≤ 2(  j (u j ) +   j (U j )).

                           Thus, for all integers 1 ≤ j ≤ n,
                                               (u − U) j (M(u − U)) j ≤ 0.

                           The matrix M is a P-matrix, and thus

                                         x 
= 0 =⇒ ∃ α ∈{1,...,n}: x α (Mx) α > 0.   (4.59)
                           Recalling that u − U 
= 0, a contradiction to (4.59) has been obtained.
   96   97   98   99   100   101   102   103   104   105   106