Page 117 - Complementarity and Variational Inequalities in Electronics
P. 117

108  Complementarity and Variational Inequalities in Electronics


                                             u i
                           and we may set z i =  . There exists a subsequence, again denoted by {z i },
                                            ||u i ||
                           such that lim z i = z with ||z|| = 1.
                                  i→+∞
                              As in the proof of Theorem 5, we check that
                                                     z ∈ B(M,K).

                           Set
                                                θ = max{	 αα ;1 ≤ α ≤ n}.
                                       j
                                                     1
                           Here, u i,j = e ,u i  ∈ K j , (1 − 	 jj ) ≥ 0 for all j ∈{1,...,n}, and thus
                                                     θ
                                                      1
                                                  (1 − 	 jj )u i,j ∈ K j .
                                                      θ
                           Therefore
                                                        1
                                                   (I − 	)u i ∈ K.
                                                        θ
                                                                           j
                           Moreover, it is also clear that  1 	 jj x 0,j ∈ K j (x 0,j = e ,x 0  ) for all j ∈
                                                     θ
                           {1,...,n}, and thus
                                                      1
                                                       	x 0 ∈ K.
                                                      θ
                                                 1
                                                            1
                           Using now (4.79) with v = 	x 0 + (I − 	)u i ∈ K, we get
                                                 θ          θ
                                      1          1      1          1      1
                                      ( I + M)u i , 	u i − 	x 0  ≤ q, 	x 0 − 	u i  .
                                       i         θ      θ          θ      θ
                           Here
                                            1         1
                                           ( I + M)u i , 	u i   > 0,∀i ∈ N,i 
= 0,
                                            i         θ
                           and thus
                                           1
                                        −Ð( I + M)u i ,	x 0  + q,	u i − 	x 0   < 0.
                                            i
                           Dividing this last relation by ||u i ||, we obtain

                                           1                        	x 0
                                        −Ð( I + M)z i ,	x 0  + q,	z i −    < 0.
                                           i                        ||u i ||
                           Taking the limit inferior as i →+∞, we get
                                               −ÐMz,	x 0  + q,	z ≤ 0,

                           that is,
                                                         T
                                                  	q − M 	x 0 ,z ≤ 0.
   112   113   114   115   116   117   118   119   120   121   122