Page 112 - Complementarity and Variational Inequalities in Electronics
P. 112

A Variational Inequality Theory Chapter | 4 103


                           and set
                                              3
                                       (∀x ∈ R ) :  (x) =   R +  (x 1 ) +   R + (x 2 ) +|x 3 |.
                           The matrix M is positive semidefinite, and

                                                          3
                                            ker(M) ={x ∈ R : x 1 = x 2 ,x 3 = 0}.
                                                                                        ∗
                           We also have D( ) ∞ = R + ×R + ×R, D(  ∞ ) = R + ×R + ×R, (D(  ∞ )) =
                                                            3
                           R + × R + ×{0}, and K(M, ) ={x ∈ R : x 1 = x 2 ,x 3 = 0}. Thus
                                                                 3
                                 D( ) ∞ ∩ ker(M) ∩ K(M, ) ={x ∈ R : x 1 = x 2 ≥ 0,x 3 = 0}.
                           The condition

                                (∀v ∈ D( ) ∞ ∩ ker(M) ∩ K(M, ), v 
= 0) : q,v +   ∞ (v) > 0

                           reduces here to
                                                (∀v 1 > 0) : (q 1 + q 2 )v 1 > 0,
                           which is equivalent to

                                                      q 1 + q 2 > 0.
                                               3
                           Therefore, for all q ∈ R such that q 1 + q 2 > 0, problem VI(M,q, ) has at
                           least one solution.

                           Example 54. Let
                                                     ⎛             ⎞
                                                         1   −10
                                                     ⎜
                                                 M = ⎝ −1    1   0 ⎠
                                                                   ⎟
                                                         0   0   1
                           and set
                                                  3
                                            (∀x ∈ R ) :  (x) =|x 1 |+|x 2 |+|x 3 |.
                           The matrix M is positive semidefinite, and

                                                          3
                                            ker(M) ={x ∈ R : x 1 = x 2 ,x 3 = 0}.
                                                             3
                                                 3
                                                                      ∗
                           We have also D( ) ∞ = R , D(  ∞ ) = R , (D(  ∞ )) ={0}, and
                                                          3
                                           K(M, ) ={x ∈ R : x 1 = x 2 ,x 3 = 0}.
                           Thus
                                                                   3
                                   D( ) ∞ ∩ ker(M) ∩ K(M, ) ={x ∈ R : x 1 = x 2 ,x 3 = 0}.
   107   108   109   110   111   112   113   114   115   116   117