Page 124 - Complementarity and Variational Inequalities in Electronics
P. 124

A Variational Inequality Theory Chapter | 4 115


                           Remark 29. Note that if

                                                        n
                                                 (∀x ∈ R ) : F(x) = Mx,
                           where M is a positive semidefinite matrix, then
                                                   n
                                                                     T (x).
                                            (∀x ∈ R ) : r (x) =   ker(M+M )
                                                       F
                           More generally, if F is a continuous and positively homogeneous mapping such
                           that
                                                       n
                                                (∀x ∈ R ) : F(x),x ≥ 0,
                           then
                                                      n
                                               (∀x ∈ R ) : r (x) =   N (F) ,
                                                          F
                           where
                                                          n
                                             N(F) ={x ∈ R : F(x),x = 0}.
                           Remark 30. Suppose that
                                                      n
                                                (∀x ∈ R ) : F(x) =∇ (x)
                                                     1
                                                        n
                           for some convex function   ∈ C (R ;R). Then
                                                      n
                                               (∀x ∈ R ) : r (x) =   ∞ (x).
                                                          F
                           Indeed, we have
                                              n
                                     (∀x,y ∈ R ,t > 0) :  (tx) −  (y) ≥ F(y),tx − y .
                                            n
                           Thus, for all x,y ∈ R and t> 0, we have
                                            (tx)         (y)         F(y),tx − y
                                      lim       ≥ lim        + lim              ,
                                     t→+∞    t    t→+∞   t    t→+∞       t
                           and therefore
                                                     ∞ (x) ≥ F(y),x .

                                          n
                           Thus, for all x ∈ R and t> 0, we have
                                                    ∞ (x) ≥ F(tx),x ,
                           so that

                                              ∞ (x) ≥ liminf F(tx),x ≥ r (x).
                                                                     F
                                                    t→+∞
   119   120   121   122   123   124   125   126   127   128   129