Page 128 - Complementarity and Variational Inequalities in Electronics
P. 128

A Variational Inequality Theory Chapter | 4 119


                              Proposition 21 means that if assumptions (H1) and (H2) hold, then problem
                           (4.87)–(4.89) can be studied via the variational inequality VI(M,q, ) with

                                           M =−PA, q =−PDu,   ≡   ◦ C.                (4.93)

                           The following result is then of particular interest to calculate the recession tools
                           involved in B(M,q, ), which here are D( ) ∞ ,   ∞ and D(  ∞ ) with   ≡
                             ◦ C.

                           Proposition 22. Suppose that assumptions (H1) and (H2) are satisfied and let
                             be defined as in (4.90). Then

                                                           n
                                            D( ) ∞ ={x ∈ R : Cx ∈ D( ) ∞ },           (4.94)
                                                    n
                                              (∀x ∈ R ) :   ∞ (x) =   ∞ (Cx),         (4.95)
                           and
                                                           n
                                             D(  ∞ ) ={x ∈ R : Cx ∈ D(  ∞ )}.         (4.96)
                           Proof. i) Let
                                                            n
                                           D ∞ (C, ) ={x ∈ R : Cx ∈ D( ) ∞ }.
                           It is easy to see that

                                                  D( ) ∞ = D ∞ (C, ).                 (4.97)
                           Indeed, if e ∈ D( ) ∞ , then (∀λ> 0) : λe+¯x 0 ∈ D( ). Thus (∀λ> 0) : C(λe+
                            ¯ x 0 ) ∈ D( ).Here ¯y 0 = C ¯x 0 ∈ D( ), and thus

                                                    1
                                             Ce ∈     (D( ) −¯y 0 ) = D( ) ∞ .
                                                    λ
                                                 λ>0
                           Thus e ∈ D ∞ (C, ).
                              Reciprocally, if e ∈ D ∞ (C, ), then Ce ∈ D( ) ∞ , and thus (∀λ> 0) :
                           λCe +¯y 0 ∈ D( ). Thus (∀λ> 0) : λe +¯x 0 ∈ D( ), and then

                                                    1
                                             e ∈     (D( ) −¯x 0 ) = D( ) ∞ .
                                                    λ
                                                λ>0
                                        n
                              ii) Let x ∈ R be given. We have
                                            1                     1
                                ∞ (x) = lim   (C(¯x 0 + λx)) = lim   ( ¯y 0 + λCx) =   ∞ (Cx).
                                      λ→+∞ λ                λ→+∞ λ
                              iii) Relation (4.96) is a direct consequence of (4.95).
   123   124   125   126   127   128   129   130   131   132   133