Page 130 - Complementarity and Variational Inequalities in Electronics
P. 130

A Variational Inequality Theory Chapter | 4 121


                                                                        is finite and continuous.
                           and assume the existence of a point x 0 ∈ R at which θ D 3
                           Then
                                                         (x) =−∂ϕ  ∗  (−x).
                                             (∀x ∈ R) : ∂θ D 3
                                                                  D 3
                           Therefore
                                                                    (−V 3 ).
                                            V 3 ∈ ∂ϕ D 3  (i 3 ) ⇔ i 3 ∈−∂θ D 3
                           We set
                                         4
                                  (∀x ∈ R ) :  (x) = ϕ D 4  (x 1 ) + θ D 3  (x 2 ) + ϕ D 1  (x 3 ) + ϕ D 2 (x 4 ).

                           Therefore the dynamical behavior of the circuit in Fig. 4.5 is described by the
                           system

                                                           B      ⎛      ⎞
                                                                     i 4

                                           dx   −1       1   1     ⎜     ⎟
                                                                  ⎜ −V 3 ⎟
                                             =     x +     0   0 ⎜       ⎟,           (4.98)
                                           dt   RC      C    C    ⎝  i 1  ⎠
                                                                     i 2
                                y         C               N            y L        F

                            ⎛      ⎞   ⎛    ⎞    ⎛                ⎞⎛       ⎞   ⎛     ⎞
                               −V 4       1         0  −10     0       i 4        0
                            ⎜      ⎟   ⎜    ⎟    ⎜                ⎟⎜       ⎟   ⎜     ⎟
                                i 3              ⎜ 1   0
                                                                                     ⎟U
                            ⎜      ⎟   ⎜ 0 ⎟               1 −1 ⎟⎜ −V 3 ⎟      ⎜ 0 ⎟
                            ⎜      ⎟ = ⎜    ⎟x + ⎜                ⎟⎜       ⎟+⎜
                                                 ⎝ 0   −10
                            ⎝ −V 1 ⎠   ⎝ 1 ⎠                   0 ⎠⎝    i 1  ⎠  ⎝ −1 ⎠
                                          0         0  1   0   0                  1
                               −V 2                                    i 2
                                                                                      (4.99)
                           and
                                                     y ∈−∂ (y L ).                   (4.100)
                           Assuming that U remains constant, that is, U(·) ≡ U, the stationary solutions
                           (or fixed points) of (4.98)–(4.100) satisfy the problem

                                −ax + By L = 0
                                                                                     (4.101)
                                                                               4
                                 Ny L + Cx + FU,v − y L  +  (v) −  (y L ) ≥ 0, ∀ v ∈ R ,
                                    1                                                1
                           with a =    > 0. From the first equation of (4.101) we deduce that x = By L ,
                                   RC                                                a
                                          1
                           so that y = (N + CB)y L + FU, and our mathematical model reduces to the
                                          a
                                          1
                           problem VI((N + CB), ,FU), that is,
                                          a
                                    1                                            4
                               (N + CB)y L + FU,v − y L  +  (v) −  (y L ) ≥ 0, ∀ v ∈ R .  (4.102)
                                    a
   125   126   127   128   129   130   131   132   133   134   135