Page 133 - Complementarity and Variational Inequalities in Electronics
P. 133

124  Complementarity and Variational Inequalities in Electronics


                           Indeed, we have

                                       ∗    ∗          ∗
                                            1
                                       2
                                                       1
                             u − E 1 − Ri ∈ Ri − ∂  R + (−i )
                                  u − E 1         1
                                                          ∗
                                               ∗
                                           ∗
                               ⇔        − i ∈ i +   ∂  R − (i )
                                              1
                                           2
                                                          1
                                    R             R
                                  u − E 1                                 −1  u − E 1
                                           ∗
                                               ∗
                                                        ∗
                                                                                      ∗
                                                             ∗
                               ⇔        − i ∈ i + ∂  R −  (i ) ⇔ i = (I + ∂  R − )  (  − i )
                                                                                      2
                                                        1
                                                             1
                                           2
                                              1
                                    R                                          R
                                            u − E 1                     u − E 1
                                                          ∗
                                  ∗
                                                     ∗
                                                                      ∗
                                                              ∗
                               ⇔ i = min{0,       − i }⇔ i + i = min{i ,      }.
                                                     2
                                                          1
                                                                      2
                                  1
                                                              2
                                              R                           R
                           We also have
                                       ∗    ∗         ∗
                                            2
                                                      2
                                       1
                             u − E 2 − Ri ∈ Ri + ∂  R + (i )
                                  u − E 2         1
                                               ∗
                                                          ∗
                                           ∗
                               ⇔        − i ∈ i +   ∂  R + (i )
                                              2
                                                          2
                                           1
                                    R             R
                                  u − E 2                                 −1  u − E 2
                                                             ∗
                                                                                      ∗
                                               ∗
                                           ∗
                                                        ∗
                               ⇔        − i ∈ i + ∂  R +  (i ) ⇔ i = (I + ∂  R + )  (  − i )
                                           1
                                                             2
                                                                                      1
                                                        2
                                              2
                                    R                                          R
                                            u − E 2                     u − E 2
                                                          ∗
                                                     ∗
                                                              ∗
                                  ∗
                                                                      ∗
                               ⇔ i = max{0,       − i }⇔ i + i = max{i ,      }.
                                  2                  1    1   2       1
                                              R                            R
                              We obtain
                                                 ⎧
                                                   u−E 1
                                                     R
                                                 ⎪       if  u<E 1
                                                 ⎪
                                                 ⎨
                                             ∗
                                             i =   0     if  E 1 ≤ u ≤ E 2
                                                 ⎪
                                                 ⎪
                                                 ⎩
                                                   u−E 2  if  u>E 2 .
                                                     R
                           Indeed, we know that i ≤ 0 and i ≥ 0. Therefore, if u>E 2 , then
                                                ∗
                                                           ∗
                                                1          2
                                                                    ∗ u−E 1
                                ∗ u−E 2
                           max{i ,    }=  u−E 2  , and if u<E 1 , then min{i ,  }=  u−E 1  .If E 1 ≤
                                1  R       R                        2   R       R
                                          ∗ u−E 1
                                                          ∗ u−E 2
                                                                                 ∗
                                                                                     ∗
                           u ≤ E 2 , then min{i ,  }≥ 0, max{i ,  }≤ 0, and thus 0 ≤ i + i ≤ 0.
                                          2  R            1   R                 1   2
                              So, for a driven time-dependent input t  à  u(t), the time-dependent current
                               ∗
                           t  à  i (t) through the resistor R is given by
                                                ⎧
                                                ⎪ u(t)−E 1  if
                                                     R
                                                ⎪            u(t) < E 1
                                                ⎪
                                                ⎨
                                          ∗
                                         i (t) =  0       if  E 1 ≤ u(t) ≤ E 2      (4.111)
                                                ⎪
                                                ⎪
                                                ⎪
                                                ⎩ u(t)−E 2  if  u(t) > E 2 ,
                                                     R
                           and the output-signal t  à  V o (t) defined by
                                                                      ∗
                                            V o (t) = V 2 (t) + E 2 = u(t) − Ri (t)
                           is then given by the expression
   128   129   130   131   132   133   134   135   136   137   138