Page 129 - Complementarity and Variational Inequalities in Electronics
P. 129

120  Complementarity and Variational Inequalities in Electronics
















                           FIGURE 4.5 Four-diode bridge.


                           4.14 FOUR-DIODE BRIDGE FULL-WAVE RECTIFIER

                           Let us consider the circuit in Fig. 4.5 involving four diodes D 1 , D 2 , D 3 , and D 4 ,
                                                                          ∈  (R;R ∪{+∞})
                           a resistor R> 0, and a capacitor C> 0. We denote by ϕ D i
                           (1 ≤ i ≤ 4) the electrical superpotential of diode D i . The input-signal source is
                           denoted by U.
                              Let us denote by V i the voltage of diode D i (1 ≤ i ≤ 4),by x the voltage
                           of the capacitor, and use the other notation indicated in Fig. 4.5. The Kirchhoff
                           laws yield the system

                                                ⎧
                                                           x    dx
                                                ⎪
                                                ⎪           + C
                                                ⎪ i 1 + i 4 =
                                                ⎪
                                                ⎪         R     dt
                                                ⎪
                                                ⎪
                                                ⎪
                                                ⎪
                                                    −V 4 = x + V 3
                                                ⎨
                                                      i 3 = i 4 + i 1 − i 2
                                                ⎪
                                                ⎪
                                                ⎪
                                                ⎪
                                                ⎪   −V 1 = x + V 3 − U
                                                ⎪
                                                ⎪
                                                ⎪
                                                ⎪
                                                    −V 2 =−V 3 + U.
                                                ⎩
                           We have
                                                 ⎧
                                                               (i 4 ),
                                                 ⎪ −V 4 ∈−∂ϕ D 4
                                                 ⎪
                                                 ⎨
                                                               (i 1 ),
                                                   −V 1 ∈−∂ϕ D 1
                                                 ⎪
                                                 ⎪
                                                               (i 2 ).
                                                 ⎩
                                                    −V 2 ∈−∂ϕ D 2
                           Moreover,
                                                      (i 3 ) ⇔ i 3 ∈ ∂ϕ  ∗  (V 3 ).
                                             V 3 ∈ ∂ϕ D 3
                                                                 D 3
                           We set
                                                          (x) = ϕ  ∗  (−x)
                                              (∀x ∈ R) : θ D 3
                                                                D 3
   124   125   126   127   128   129   130   131   132   133   134