Page 125 - Complementarity and Variational Inequalities in Electronics
P. 125

116  Complementarity and Variational Inequalities in Electronics


                           On the other hand,

                                             n
                                       (∀x ∈ R ,t > 0) :  (0) −  (tx) ≥− F(tx),tx ,
                           and thus
                                                       (tx)    (0)
                                              n
                                       (∀x ∈ R ,t > 0) :    ≤      + F(tx),x ,
                                                        t      t
                           which results in
                                                      ∞ (x) ≤ r (x).
                                                             F
                                                                    3
                           Example 59. Let us set, for all x = (x 1 ,x 2 ,x 3 ) ∈ R ,
                                                       ⎛          ⎞
                                                            |x 1 |
                                                       ⎜          ⎟
                                                 F(x) = ⎝ |x 1 + x 2 | ⎠
                                                           x 1 + x 2

                           and
                                                      (x) =   3 .
                                                             R
                                                              +
                                                             3
                           Here   ∞ =   and D(  ∞ ) = D( ) ∞ = R .Wehave
                                                             +
                                       3
                                (∀x ∈ R ) : F(x),x =|x 1 |x 1 +|x 1 + x 2 |x 2 + x 1 x 3 + x 2 x 3 ≥ 0.
                                       +
                           We also have

                                                          3
                                                 3
                                        N(F) ∩ R ={x ∈ R : x 1 = x 2 = 0,x 3 ≥ 0}.
                                                 +
                           The mapping F is positively homogeneous, and thus, if x ∈ R 3  and
                                                                                    +
                            F(x),x  > 0, then r (x) =+∞. The condition
                                            F
                                     (∀v ∈ D( ) ∞ ,v 
= 0) : r (u) + q,v +   ∞ (v) > 0
                                                         F
                           reduces here to
                                                        3
                                           (∀v ∈ N(F) ∩ R ,v 
= 0) : q,v  > 0,
                                                        +
                           which is equivalent to
                                                  (∀v 3 > 0) : q 3 v 3 > 0

                           or also to q 3 > 0. Therefore, for all q ∈ R n  such that q 3 > 0, problem
                           VI(F,q, ) has at least one solution.
   120   121   122   123   124   125   126   127   128   129   130