Page 135 - Complementarity and Variational Inequalities in Electronics
P. 135

126  Complementarity and Variational Inequalities in Electronics


                           We see that system (4.113) is equivalent to the variational inequality VI(F,q, ),
                           that is,
                                     2
                                                                             2
                                I ∈ R : F(I) + q,v − I +  (v) −  (I) ≥ 0,∀v ∈ R .   (4.115)
                           Here, D( ) = D( ) ∞ = R − × R + ,

                                              2                      5             5
                               (∀x = (x 1 ,x 2 ) ∈ R ) : F(x),x = R(x 1 + x 2 ) x 1 + R(x 1 + x 2 ) x 2
                                                                     6
                                                          = R(x 1 + x 2 ) ≥ 0,
                           and
                                                    2
                                         (∀(x 1 ,x 2 ) ∈ R ) : F(x 1 ,x 2 ) =∇ϒ(x 1 ,x 2 ),
                           where
                                                                 R
                                                    2                      6
                                         (∀(x 1 ,x 2 ) ∈ R ) : ϒ(x 1 ,x 2 ) =  (x 1 + x 2 ) .
                                                                  6
                           The function ϒ is convex, and thus
                                                                  Rt 5       6
                                       r (x 1 ,x 2 ) = ϒ ∞ (x 1 ,x 2 ) = lim  (x 1 + x 2 )
                                        F                    t→+∞ 6

                                                    +∞ if   x 1 + x 2 
= 0
                                               =
                                                    0    if  x 1 + x 2 = 0.
                           Let (x 1 ,x 2 ) ∈ R − × R + be such that (x 1 ,x 2 ) 
= 0. If x 1 + x 2 
= 0, then
                           r (x 1 ,x 2 ) =+∞, and condition (4.83) in Theorem 10 is satisfied. If x 1 +
                            F
                           x 2 = 0, then r (x 1 ,x 2 ) = 0, and condition (4.83) holds if and only if
                                      F
                                        (∀x 2 > 0) :−q 1 x 2 + q 2 x 2 = (E 2 − E 1 )x 2 > 0.
                           Here E 2 >E 1 , and the variational inequality VI(F,q, ) has at least one solu-
                                                      ¯
                                                         ¯ ¯
                           tion. Note that if I = (i 1 ,i 2 ) and I = (i 1 ,i 2 ) are two solutions, then
                                                          ¯
                                                                ¯
                                                 F(I) − F(I),I − I ≤ 0.
                           The function F =∇ϒ is monotone, and thus
                                                                ¯
                                                         ¯
                                                 F(I) − F(I),I − I = 0,
                           which is equivalent to
                                                                             5
                                     5
                                               5
                                                                   5
                                         ¯
                                                                                   ¯
                            R((i 1 + i 2 ) − (i 1 + i 2 ) )(i 1 − i 1 ) + R((i 1 + i 2 ) − (i 1 + i 2 ) )(i 2 − i 2 ) = 0
                                             ¯
                                                                       ¯
                                                                           ¯
                                                     ¯
                           or also
                                              5
                                                        5
                                                  ¯
                                     R((i 1 + i 2 ) − (i 1 + i 2 ) )((i 1 + i 2 ) − (i 1 + i 2 )) = 0.
                                                                     ¯
                                                                        ¯
                                                      ¯
   130   131   132   133   134   135   136   137   138   139   140