Page 136 - Complementarity and Variational Inequalities in Electronics
P. 136

A Variational Inequality Theory Chapter | 4 127


                                                                       ¯
                                                                   ¯
                           This last equality holds if and only if i 1 + i 2 = i 1 + i 2 , which means that the
                                                                 ∗
                                                                     ∗
                                                            ∗
                           current through the resistor R, that is, i = i + i , is uniquely determined.
                                                                 1   2
                           Moreover, the variational inequality VI(F,q, ) is here equivalent to the mini-
                           mization problem
                                                                       ,
                                               min ϒ(x) + q,x +   R − ×R +
                                              x∈R 2
                           so that
                                     R       6              R        6
                                                                  ¯
                                                                          ¯
                                                                               ¯
                                                               ¯
                                       (i 1 + i 2 ) + q 1 i 1 + q 2 i 2 =  (i 1 + i 2 ) + q 1 i 1 + q 2 i 2 .
                                     6                      6
                                                  ¯
                                              ¯
                           We know that i 1 + i 2 = i 1 + i 2 , and thus
                                               q 1 (i 1 − i 1 ) + q 2 (i 2 − i 2 ) = 0.
                                                                 ¯
                                                      ¯
                           We get the system
                                                 A


                                             1       1       i 1 − i 1   0
                                                                 ¯
                                                                     =       .
                                           E 1 − uE 2 − u    i 2 − i 2   0
                                                                 ¯
                           Here E 2 
= E 1 , and thus det(A) = E 2 − E 1 
= 0. Thus i 1 = i 1 and i 2 = i 2 .The
                                                                                     ¯
                                                                           ¯
                           solution VI(F,q, ) is thus unique.
                           Example 62 (Double-diode clipper/Practical diode). Let us again consider the
                           circuit in Fig. 4.6 and suppose that the electrical superpotential of each diodes
                           D 1 and D 2 is given by (practical diode model)

                                                             ν 1 x  if x ≥ 0
                                          (∀x ∈ R) : ϕ PD (x) =
                                                             ν 2 x  if x< 0,
                           where ν 2 < 0 <ν 1 . We suppose also that
                                                          E 2 − E 1
                                                    |ν 2 | >     .                   (4.116)
                                                             2
                           We set
                                              (∀x ∈ R) :¯ϕ PD (x) = ϕ PD (−x)

                           and
                                                 2
                                          (∀x ∈ R ) :  (x) =¯ϕ PD (x 1 ) + ϕ PD (x 2 ).  (4.117)
                              The Kirchoff laws yield the system

                                          E 1 + R(i 1 + i 2 ) − u =+V 1 ∈−∂ ¯ϕ PD (i 1 )
                                                                                     (4.118)
                                          E 2 + R(i 1 + i 2 ) − u =−V 2 ∈−∂ϕ PD (i 2 ),
   131   132   133   134   135   136   137   138   139   140   141