Page 149 - Complementarity and Variational Inequalities in Electronics
P. 149

140  Complementarity and Variational Inequalities in Electronics


                           where

                                       R L + R C + R 6     R C         R g + R 2
                                   K =              > 0,L =    > 0,N =         > 0,
                                          R 6 R L           R L          R 2
                                             R C             R 1 (R C + R 6 )
                                         S =    > 0,T = R C +           > 0.
                                             R 6                 R 6
                              System (4.129) is equivalent to
                                                     A


                                        −(R g K + N)      R g K          −V E
                                          L + R 1 K  −(1 + L + R 1 K)    −V C
                                                 B


                                            −R g  R g S    i E      u g
                                        =                       +        .
                                              0    −T      i C      0
                              Since the matrix A is invertible, it follows that

                                          −V E       −1    i E     −1  u g
                                                 = A   B       + A          ,
                                          −V C             i C          0
                           where

                                     1   R g (1 + L + R 1 K)  −R g S(1 + L + R 1 K) + R g KT
                              −1
                             A  B =
                                    μ 0    R g (L + R 1 K)  −R g (L + R 1 K)S + T(R g K + N)
                           with
                                             μ 0 = R g K + N(1 + L + R 1 K).

                           Using
                                                           C


                                                   1        1             I
                                         i E                     −α I
                                              =                               ,
                                         i C    1 − α I α N  −α N  1     I
                           we obtain
                                                          x          q


                                                          I
                                            −V E                 −1   u g
                                                   = M        +A          ,
                                            −V C          I           0
                           where

                                                          1
                                                  −1          M 11  M 12
                                            M = A   BC =
                                                         μ    M 21  M 22
   144   145   146   147   148   149   150   151   152   153   154