Page 152 - Complementarity and Variational Inequalities in Electronics
P. 152

A Variational Inequality Theory Chapter | 4 143


                                          ⎧
                                                             I i − I 1 + I 2 = 0,
                                          ⎪
                                          ⎪
                                          ⎨
                                                   R i I i + R 1 I 1 − U i + V D = 0,
                                          ⎪
                                          ⎪
                                             −γR i I i + R 1 I 1 + (R 2 + R 0 )I 2 = 0
                                          ⎩
                           with currents I i ,I 1 ,I 2 and voltages V D ,U i as defined in Fig. 4.16. Therefore,
                                        A               ϒ         B            D

                            ⎛                       ⎞⎛     ⎞   ⎛     ⎞     ⎛      ⎞
                                 1    −1      1         I i       0             0
                            ⎜                       ⎟⎜     ⎟   ⎜     ⎟     ⎜      ⎟
                                R i   R 1     0     ⎠⎝ I 1 ⎠ − ⎝ −1 ⎠ V D + ⎝ −1 ⎠ U i = 0,
                            ⎝
                               −γR i  R 1  (R 2 + R o )  I 2      0             0
                           and
                                                    V D ∈ ∂ϕ ZD (I i ),              (4.133)
                           where ϕ ZD denotes the electrical superpotential of the Zener diode, that is,


                                                              V 1 x  if x ≥ 0
                                          (∀x ∈ R) : ϕ ZD (x) =
                                                              V 2 x  if x< 0
                           with V 2 < 0 <V 1 . Setting

                                                        C     ⎛     ⎞
                                                                 I i

                                                                    ⎟
                                                              ⎜
                                                y =  100      ⎝ I 1 ⎠ ,
                                                                 I 2
                           we may write relation (4.133) equivalently as

                                                     V ∈ ∂ϕ ZD (y),

                           and we may consider problem NRM(A,B,C,D,U i ,ϕ ZD ).
                              We check that the assumptions of Proposition 21 are satisfied. Indeed, As-
                           sumption (H1) is satisfied since ϕ ZD is convex and continuous on R. Assump-
                           tion (H2) holds with
                                                    ⎛              ⎞
                                                        0  −1    0
                                                        0    0 −1 ⎠ .
                                                    ⎜              ⎟
                                                P = ⎝
                                                       −1    0   0
                              As a consequence of Proposition 21, problem NRM(A,B,C,D,U i ,ϕ ZD )
                           can be studied via the problem VI(−PA,−PDU i , ), where
                                                 3
                                          (∀x ∈ R ) :  (x) = ϕ ZD (Cx) = ϕ ZD (x 1 ).
   147   148   149   150   151   152   153   154   155   156   157