Page 150 - Complementarity and Variational Inequalities in Electronics
P. 150

A Variational Inequality Theory Chapter | 4 141


                           with

                                                   μ = μ 0 (1 − α I α N )

                           and
                               ⎧
                               ⎪ M 11 = R g (1 + L + R 1 K) + α N R g S(1 + L + R 1 K) − α N R g KT,
                               ⎪
                               ⎪
                               ⎪
                                 M 12 =−α I R g (1 + L + R 1 K) − R g S(1 + L + R 1 K) + R g KT,
                               ⎨
                               ⎪ M 21 = R g (L + R 1 K) + α N (R g (L + R 1 K)S − T(R g K + N)),
                               ⎪
                               ⎪
                               ⎪
                                 M 22 =−α I R g (L + R 1 K) − R g (L + R 1 K)S + T(R g K + N).
                               ⎩
                              Suppose now that the emitter electrical potential (resp. the collector elec-
                           trical potential) of the (practical) transistor is given by ϕ E ∈  (R;R ∪{+∞})
                           (resp. ϕ C ∈  (R;R ∪{+∞}))asinSection 2.3.2 of Chapter 2 (practical diode
                           model). We set
                                                      2
                                         ∀z = (z 1 ,z 2 ) ∈ R :  (z) = ϕ E (z 1 ) + ϕ C (z 2 ).
                           Our model now reads

                                                                             2
                                      2
                                 x ∈ R : Mx + q,v − x +  (v) −  (x) ≥ 0, ∀v ∈ R .    (4.130)
                                                n
                           It is clear that   ∈ D (R ;R ∪{+∞}). Moreover, the principal minors of the
                           matrix M are
                                             1              1
                                      1 (M) =  M 11 ,  2 (M) =  M 22 ,  12 (M) = det(M).
                                            μ               μ

                              We can easily check that M 11 > 0 and M 22 > 0. Indeed, replacing L, N, S,
                           and T in M 11 and M 22 , after some calculations, we obtain

                                                           R g R C
                                         M 11 = R g + (1 − α N )(  + R 1 R g K) > 0  (4.131)
                                                             R L
                           and

                                              R g R C
                                  M 22 = NT +      + (1 − α I )(R g L + R 1 R g K) > 0.  (4.132)
                                               R 6
                              Moreover, since det(A) = R g K + N(1 + L + R K )> 0, det(B) = R g T> 0,
                           and det(C) > 0, we see that det(M) > 0. The matrix M is thus a P-matrix, and
                                                                       n
                           we may use Theorem 7 to conclude that for each q ∈ R , problem VI(M,q, )
                           has a unique solution.
   145   146   147   148   149   150   151   152   153   154   155