Page 15 - Complementarity and Variational Inequalities in Electronics
P. 15

The Complementarity Problem Chapter | 1  5




















                           FIGURE 1.2 Clipping circuit 1: Diode as shunt element.



                              Let us consider the clipping circuit of Fig. 1.2 involving a load resistance
                           R> 0, an input signal source u and the corresponding instantaneous current i,
                           an ideal diode as a shunt element, and a supply voltage E.
                              Kirchoff’s voltage law gives

                                                    u = U R + V + E,


                           where U R = Ri denotes the difference of potential across resistor, and V is the
                           difference of potential across diode. Thus


                              0 ≤ i ⊥−V ≥ 0 ⇔ 0 ≤ i ⊥ E + Ri − u ≥ 0 ⇔ min{i,E − u + Ri}= 0
                                                    E − u                   E − u
                                            ⇔ min{i,     + i}= 0 ⇔ i + min{0,    }= 0
                                                      R                       R
                                                         E − u    1
                                            ⇔ i =−min{0,      }=    max{0,u − E}.
                                                           R      R
                           If u ≤ E, then the diode is blocking (i = 0), whereas if u>E, then the diode is
                                         1
                           conducting (i =  (u − E)). Let us now consider a driven time-dependent input
                                         R
                           t  → u(t) and define the output signal t  → V o (t) as

                                                   V o (t) = E + V(t).

                           The time-dependent current t  → i(t) is given by

                                                      1
                                                i(t) =  max{0,u(t) − E},               (1.1)
                                                     R
   10   11   12   13   14   15   16   17   18   19   20