Page 20 - Complementarity and Variational Inequalities in Electronics
P. 20

10  Complementarity and Variational Inequalities in Electronics
















                                               2
                           FIGURE 2.5  (x) = max{0,x − 1} and ∂ (x).

                           ∂ (x) = 0. If x = 1, then

                                                   2
                                            max{0,v − 1}≥ w(v − 1), ∀v ∈ R,
                                                                                   2
                           if and only if w ∈[0,2]. Indeed, let us first suppose that max{0,v − 1}≥
                                                                2
                           w(v − 1), ∀v ∈ R. Then, for v> 1, we get v − 1 = (v − 1)(v + 1)> 0 and
                           thus (v − 1)(v + 1) ≥ w(v − 1). It results that (∀v> 1) : (v + 1) ≥ w and thus
                                                             2
                           w ≤ 2. We have also that, for 0 <v < 1, v − 1 = (v − 1)(v + 1)< 0 and thus
                           0 ≥ w(v − 1), from which we deduce that w ≥ 0 since v − 1 < 0. Let us now
                                                                  2
                           suppose that w ∈[0,2]. We check that max{0,v − 1}≥ w(v − 1), ∀v ∈ R.If
                                                                             2
                           v> 1, then w(v − 1) ≤ 2(v − 1) ≤ (v + 1)(v − 1) = max{0,v − 1}.If v = 1,
                                                                               2
                           then the result is trivial. If v< 1, then w(v − 1) ≤ 0 ≤ max{0,v − 1}.Using
                           similar computations, we check that if x =−1, then
                                                   2
                                            max{0,v − 1}≥ w(v + 1), ∀v ∈ R,
                           if and only if w ∈[−2,0] (see Fig. 2.5).
                                             n
                           Example 4. Let   : R → R be defined by
                                                               n

                                                     n
                                              (∀x ∈ R ) :  (x) =  ϕ i (x i )
                                                               i=1
                                       n
                           with ϕ i ∈   0 (R ;R ∪{+∞})(1 ≤ i ≤ n). Then
                                                                              n
                                      w ∈ ∂ (x) ⇔  (v) −  (x) ≥
w,v − x ,∀v ∈ R
                                                         ⇔
                                   n         n          n

                                     ϕ i (v i ) −  ϕ i (x i ) ≥  w i (v i − x i ),∀v 1 ,v 2 ,...,v n ∈ R
                                  i=1        i=1       i=1
                                                         ⇔
   15   16   17   18   19   20   21   22   23   24   25