Page 21 - Complementarity and Variational Inequalities in Electronics
P. 21

The Convex Subdifferential Relation Chapter | 2 11


                                    (∀i ∈{1,...,n}) : ϕ i (v i ) − ϕ i (x i ) ≥ w i (v i − x i ),∀v i ∈ R.

                           Thus
                                                         ⎛         ⎞
                                                           ∂ϕ 1 (x 1 )
                                                         ⎜         ⎟
                                                         ⎜ ∂ϕ 2 (x 2 ) ⎟
                                                 ∂ (x) =  ⎜   .    ⎟ .
                                                              .
                                                         ⎜         ⎟
                                                         ⎝    .    ⎠
                                                           ∂ϕ n (x n )
                           Remark 3. We have (see e.g. [15])
                                                D(∂ ) ⊂ D( ) ⊂ D(∂ ).

                              Let us here recall some basic calculus rules (see e.g. [72], [79]).
                                                   n
                           Proposition 2. Let   ∈   0 (R ;R∪{+∞}). Then for all x ∈ D(∂ ) and λ> 0,
                           we have

                                                  ∂(λ )(x) = λ∂ (x).
                                           n
                           Let   1 ,  2 ∈   0 (R ;R ∪{+∞}). Then for every x ∈ D(∂  1 ) ∩ D(∂  2 ),we
                           have
                                          ∂  1 (x) + ∂  2 (x) ⊂ ∂(  1 +   2 )(x).

                           Remark 4. If there exists a point x 0 ∈ D(  1 ) ∩ D(  2 ) at which   1 is contin-
                           uous, then for every x ∈ D(∂  1 ) ∩ D(∂  2 ),wehave(see [12])

                                            ∂  1 (x) + ∂  2 (x) = ∂(  1 +   2 )(x).

                           Example 5. Let   : R → R be defined by

                                                  (∀x ∈ R) :  (x) = σ|x|
                           with σ> 0. Then

                                                    ⎧
                                                         −σ     if  x< 0
                                                    ⎪
                                                    ⎪
                                                    ⎨
                                            ∂ (x) =   [−σ,+σ] if   x = 0
                                                    ⎪
                                                    ⎪
                                                         +σ     if  x> 0.
                                                    ⎩
                           Example 6. Let   1 ,  2 : R → R be defined as in Fig. 2.6 by

                                                             +∞    if  x< 0
                                          (∀x ∈ R) :   1 (x) =  √
                                                            − x    if  x ≥ 0
   16   17   18   19   20   21   22   23   24   25   26