Page 24 - Complementarity and Variational Inequalities in Electronics
P. 24

14  Complementarity and Variational Inequalities in Electronics












                                                ∗
                           FIGURE 2.7 Computation of   (z).

                           Then
                                                  ⎧
                                                  ⎪ +∞ if     z< −1
                                                  ⎪
                                                  ⎨
                                             ∗
                                             (z) =    0    if  z ∈[−1,+1]
                                                  ⎪
                                                     +∞ if    z> +1.
                                                  ⎪
                                                  ⎩
                                              n
                           Example 10. Let   : R → R be defined by
                                                     n
                                               (∀x ∈ R ) :  (x) =
l,x + c
                                   n
                           with l ∈ R and c ∈ R. Then

                                                        −c   if  z = l
                                                ∗
                                                (z) =
                                                        +∞ if    z  = l.
                                              n
                           Example 11. Let   : R → R be defined by
                                                               1
                                                     n
                                              (∀x ∈ R ) :  (x) = 
Ax,x
                                                               2
                           with A ∈ R n×n  symmetric and positive definite. Then
                                                               1
                                              ∗
                                               (z) = sup {
x,z − 
Ax,x }.
                                                    x∈R n      2
                                               1
                           Setting F(x) =
x,z − 
Ax,x , we see that ∇F(x) = z − Ax, from which
                                               2
                           we deduce that the strictly convex function x  ð  F(x) has a unique global max-
                           imum point at x = A −1 z. Thus
                                                      1    −1   −1     1  −1
                                              −1
                                      ∗
                                       (z) =
A  z,z − 
AA    z,A  z = 
A    z,z .
                                                      2                2
                                                       n
                           Definition 1. We say that U,V ∈ R satisfy a convex subdifferential relation if
                                                       n
                                                (∀U ∈ R ) : V ∈ ∂ (U)
                                          n
                           for some   ∈   0 (R ;R ∪{+∞}).
   19   20   21   22   23   24   25   26   27   28   29