Page 28 - Complementarity and Variational Inequalities in Electronics
P. 28

18  Complementarity and Variational Inequalities in Electronics

















                                                                   o
                                                                        ∗
                           FIGURE 2.10 A cone K and the corresponding polar cone K =−K .
                                               n
                           Example 14. Let K = R . Then
                                               +
                                                             n
                                                        ∗
                                                      K = R .
                                                             +
                                                        n
                           Example 15. Let a 1 ,a 2 ,...,a m ∈ R be given vectors. Set
                                             n
                                    K ={x ∈ R :
a 1 ,x ≥ 0,
a 2 ,x ≥ 0,...,
a m ,x ≥ 0}.
                           Then using Farkas’ lemma (see e.g. [83]), we obtain

                                  ∗
                                K ={λ 1 a 1 + λ 2 a 2 + ··· + λ m a m : λ 1 ≥ 0,λ 2 ≥ 0,...,λ m ≥ 0}.
                              A more general form of the complementarity relation is

                                                         ∗
                                             U ∈ K,V ∈ K , and 
U,V  = 0,
                           which may be also written as

                                                                ∗
                                                   K   U ⊥ V ∈ K .
                           We have:
                                                 ∗
                                    K   U ⊥ V ∈ K ⇔−V ∈ ∂
 K (U)
                                                  ⇔ V ∈ K & 
V,h − U ≥ 0, ∀h ∈ K.
                                            n
                                                                                         ∗
                           Indeed, let U,V ∈ R satisfy the complementarity relation K   U ⊥ V ∈ K .
                           Then (∀h ∈ K) :
V,h ≥ 0, and since 
V,U = 0, we see that
                                               (∀h ∈ K) :
V,h − U ≥ 0,

                           meaning that −V ∈ ∂
 K (U). Reciprocally, if −V ∈ ∂
 K (U), then U ∈ K and
                           (∀h ∈ K) :
V,h − U ≥ 0. We have 2U ∈ K, and we may thus set h = 2U to
   23   24   25   26   27   28   29   30   31   32   33