Page 25 - Complementarity and Variational Inequalities in Electronics
P. 25

The Convex Subdifferential Relation Chapter | 2 15
















                                                     ∗
                           FIGURE 2.8 x  ð  ∂ (x) and z  ð  ∂  (z).

                           Example 12. Let   : R → R be defined by

                                                  (∀x ∈ R) :  (x) =|x|.

                           We have
                                                   ⎧
                                                   ⎪ +∞ if    z< −1
                                                   ⎪
                                                   ⎨
                                             ∗
                                              (z) =    0   if  z ∈[−1,+1]
                                                   ⎪
                                                   ⎪
                                                      +∞ if   z> +1.
                                                   ⎩
                           We have
                                                    ⎧
                                                         −1     if x< 0
                                                    ⎪
                                                    ⎪
                                                    ⎨
                                             ∂ (x) =   [−1,+1]  if x = 0
                                                    ⎪
                                                    ⎪
                                                         +1     if x> 0
                                                    ⎩
                           and
                                                    ⎧
                                                    ⎪ ∅    if z< −1
                                                    ⎪
                                                    ⎪
                                                           if z =−1
                                                    ⎪
                                                    ⎪
                                                    ⎪ R −
                                                    ⎪
                                                    ⎨
                                              ∗
                                            ∂  (z) =   0   if z ∈]−1,+1[
                                                    ⎪
                                                    ⎪
                                                           if z =+1
                                                    ⎪
                                                    ⎪ R +
                                                    ⎪
                                                    ⎪
                                                    ⎪
                                                    ⎩
                                                       ∅   if z> −1.
                            The convex subdifferential relation
                                                       z ∈ ∂ (x)
                           is equivalent (see Fig. 2.8) to the convex subdifferential relation
                                                            ∗
                                                      x ∈ ∂  (z).
   20   21   22   23   24   25   26   27   28   29   30