Page 23 - Complementarity and Variational Inequalities in Electronics
P. 23

The Convex Subdifferential Relation Chapter | 2 13


                           with ϕ 1 ,ϕ 2 : R → R real-valued convex (and thus continuous) functions. Let
                           A ∈ R 2×2  be given. Then

                                                    w ∈ ∂( (A))(x)
                                                          ⇔
                                                         T
                                                    w ∈ A ∂ (Ax)
                                                          ⇔


                                        w 1      a 11  a 21  ∂ϕ 1 (a 11 x 1 + a 12 x 2 )
                                             ∈                                  ,
                                        w 2      a 12  a 22  ∂ϕ 2 (a 21 x 1 + a 22 x 2 )
                           that is, also

                                     w 1 ∈ a 11 ∂ϕ 1 (a 11 x 1 + a 12 x 2 ) + a 21 ∂ϕ 2 (a 21 x 1 + a 22 x 2 )

                           and
                                     w 2 ∈ a 12 ∂ϕ 1 (a 11 x 1 + a 12 x 2 ) + a 22 ∂ϕ 2 (a 21 x 1 + a 22 x 2 ).

                                         n
                                                                                 ∗
                              Let   ∈   0 (R ;R ∪{+∞}) be given. The Fenchel transform   of   is the
                           function defined by
                                               n
                                                     ∗
                                         (∀z ∈ R ) :   (z) = sup {
x,z −  (x)}.
                                                          x∈D( )
                                           n
                                       ∗
                           The function   : R → R∪{+∞} is proper convex and lower semicontinuous.
                           It is also called the conjugate function of  . A well-known result in convex
                           analysis (see e.g. [53], [79]) ensures that

                                                       ∗
                                                                       ∗
                                    z ∈ ∂ (x) ⇐⇒ x ∈ ∂  (z) ⇐⇒  (x) +   (z) =
x,z .
                           Example 8. Let   : R → R be defined by
                                                                  2
                                                  (∀x ∈ R) :  (x) = x .
                           Simple calculations (see Fig. 2.7)give

                                                               z    z  2  1  2
                                                         2
                                          ∗
                                           (z) = sup{xz − x }= z( ) − ( ) = z .
                                                x∈R            2    2     4

                           Example 9. Let   : R → R be defined by
                                                  (∀x ∈ R) :  (x) =|x|.
   18   19   20   21   22   23   24   25   26   27   28