Page 19 - Complementarity and Variational Inequalities in Electronics
P. 19

The Convex Subdifferential Relation Chapter | 2  9

















                           FIGURE 2.4  (x) =|x| and ∂ (x).


                           Example 2. Let   : R → R be defined by

                                                  (∀x ∈ R) :  (x) =|x|.

                           Then
                                                    ⎧
                                                         −1     if x< 0
                                                    ⎪
                                                    ⎪
                                                    ⎨
                                            ∂ (x) =    [−1,+1]  if x = 0
                                                    ⎪
                                                    ⎪
                                                         +1     if x> 0.
                                                    ⎩
                           The function is indeed differentiable at x  = 0. If x> 0, then  (x) = x and
                           ∂ (x) = 1. If x< 0, then  (x) =−x and ∂ (x) =−1. If x = 0, then
                                                    |v|≥ wv, ∀v ∈ R,

                           if and only if w ∈[−1,+1] (see Fig. 2.4).

                           Example 3. Let   : R → R be defined by

                                                                   2
                                             (∀x ∈ R) :  (x) = max{0,x − 1}.
                           Then
                                                  ⎧
                                                      2x    if  x< −1
                                                  ⎪
                                                  ⎪
                                                  ⎪
                                                  ⎪
                                                  ⎪ [−2,0] if   x =−1
                                                  ⎪
                                                  ⎪
                                                  ⎨
                                          ∂ (x) =      0    if  x ∈]−1,+1[
                                                  ⎪
                                                  ⎪
                                                  ⎪ [0,+2]  if  x = 1
                                                  ⎪
                                                  ⎪
                                                  ⎪
                                                  ⎪
                                                      2x    if  x> 1.
                                                  ⎩
                           The function is indeed differentiable at x ∈ R\{−1,1}.If x< −1or x> 1,
                                        2
                           then  (x) = x − 1 and ∂ (x) = 2x.If x ∈]−1,+1[, then  (x) = 0 and
   14   15   16   17   18   19   20   21   22   23   24