Page 22 - Complementarity and Variational Inequalities in Electronics
P. 22

12  Complementarity and Variational Inequalities in Electronics






















                           FIGURE 2.6  For any w ∈ R, there exists v ∈ R such that   i (v) < wv, and thus ∂  i (0) =∅
                           (i = 1,2). However, for any given w ∈ R, we see that   1 (v) +   2 (v) ≥ wv,∀v ∈ R. Thus ∂(  1 +
                             2 )(0) = R.

                           and
                                                        
   √
                                                           − −x    if  x ≤ 0
                                        (∀x ∈ R) :   2 (x) =
                                                            +∞     if  x> 0.
                           Then

                                                                 0   if  x = 0
                                      (∀x ∈ R) :   1 (x) +   2 (x) =
                                                                +∞ if   x  = 0.
                           We have
                                        ∂  1 (0) =∅,∂  2 (0) =∅,∂(  1 +   2 )(0) = R,
                           and thus

                                            ∂  1 (0) + ∂  2 (0) ⊂ ∂(  1 +   2 )(0)
                           and

                                            ∂  1 (0) + ∂  2 (0)  = ∂(  1 +   2 )(0).
                                                   m
                           Proposition 3. Let   ∈   0 (R ;R ∪{+∞}) and A ∈ R m×n  be given. Suppose
                                                      n
                           that there exists y 0 = Ax 0 (x 0 ∈ R ) at which   is finite and continuous. Then
                                                                T
                                               n
                                         (∀x ∈ R ) : ∂( (A))(x) = A ∂ (Ax).
                                             2
                           Example 7. Let   : R → R be defined by
                                                  2
                                            (∀x ∈ R ) :  (x) = ϕ 1 (x 1 ) + ϕ 2 (x 2 )
   17   18   19   20   21   22   23   24   25   26   27