Page 159 - Complementarity and Variational Inequalities in Electronics
P. 159

150  Complementarity and Variational Inequalities in Electronics


















                           FIGURE 5.2 Nonregular Circuit.


                           and

                                   L 2 x (t) + R 2 x 3 (t) + R 1 (x 3 (t) − x 2 (t)) − y L,1 (t) = u(t),
                                       3
                           where R 1 > 0,R 2 > 0,R 3 > 0 are resistors, L 2 > 0, L 3 > 0 are inductors,
                           C 4 > 0 is a capacitor, x 2 is the current across the capacitor, x 3 is the current
                           across the inductor L 2 and resistor R 2 , y L,1 is the voltage of the Zener diode,
                           y L,2 is the voltage of the diode, ϕ Z is the electrical superpotential of the Zener
                           diode, and ϕ D is the electrical superpotential of the diode. Denoting by x 1 the
                           time integral of the current across the capacitor, that is,
                                                           t

                                                  x 1 (t) =  x 2 (s)ds,
                                                          0
                           we obtain
                                                           A

                                  ⎛      ⎞   ⎛                           ⎞
                                     dx 1         0       1         0      ⎛     ⎞
                                      dt                                      x 1
                                                  1                 R 1
                                  ⎜      ⎟   ⎜           (R 1 +R 3 )     ⎟
                                  ⎜ dx 2 ⎟  =  ⎜  −    −                 ⎟⎝   x 2  ⎠
                                                 L 3 C 4   L 3      L 3
                                  ⎝          ⎝                           ⎠
                                      dt ⎠
                                     dx 3         0       R 1    − (R 1 +R 2 )  x 3
                                      dt                  L 2       L 2
                                                     B                    D


                                               ⎛          ⎞            ⎛    ⎞
                                                    0   0                 0

                                               ⎜   1    1  ⎟  y L,1
                                                                            ⎟
                                             −  ⎜         ⎟            ⎜  0  ⎠ u
                                                   L 3               + ⎝
                                               ⎝       L 3 ⎠  y L,2
                                                   1                      1
                                                 −      0
                                                   L 2                   L 2
                           and

                                                  y L,1 ∈ ∂ϕ D (−x 3 + x 2 ),
                                                                                     (5.18)
                                                  y L,2 ∈ ∂ϕ Z (x 2 ).
   154   155   156   157   158   159   160   161   162   163   164