Page 163 - Complementarity and Variational Inequalities in Electronics
P. 163

154  Complementarity and Variational Inequalities in Electronics


                                                         1
                           Lemma 2. Let T> 0 and a,b ∈ L (t 0 ,t 0 + T ;R) with b(t) ≥ 0,a.e. t ∈
                           [t 0 ,t 0 + T ]. Let an absolutely continuous function w :[t 0 ,t 0 + T ]→ R + sat-
                           isfy
                                                              α

                                   (1 − α)w (t) ≤ a(t)w(t) + b(t)w (t), a.e. t ∈[t 0 ,t 0 + T ],
                           where 0 ≤ α< 1. Then
                                                                t  a(τ)dτ     t    t
                                                             t
                           (∀t ∈[t 0 ,t 0 + T ]) : w 1−α (t) ≤ w 1−α (t 0 )e 0  +  e s  a(τ)dτ  b(s)ds.
                                                                       t 0
                           Theorem 12 (Continuity in the initial condition). Let t ≥ t 0 . The function

                                                            n
                                         x(t;t 0 ,.) : D(∂ϕ) → R ;x 0 → x(t;t 0 ,x 0 )
                           is uniformly continuous.

                           Proof. Fix τ ≥ t 0 .Let ε> 0 and set
                                                           ε
                                                    δ = √       .
                                                         e 2ω(τ−t 0 )

                              We claim that if x 0 ,x ∈ D(∂ϕ), ||x 0 − x || ≤ δ, then ||x(τ;t 0 ,x 0 ) −
                                                 0                0



                           x(τ;t 0 ,x )|| ≤ ε. Indeed, let us set x(t) = x(t;t 0 ,x 0 ) and x (t) = x(t;t 0 ,x ).
                                  0                                                     0
                           We know that
                             dx                                           n
                            
  (t)+F(x(t)),v−x(t) +ϕ(v)−ϕ(x(t)) ≥ 0, ∀v ∈ R , a.e. t ≥ t 0 , (5.25)
                             dt
                           and
                                        dx
                                       
    (t) + F(x (t)),z − x (t)
                                         dt

                                                                   n
                                          + ϕ(z) − ϕ(x (t)) ≥ 0, ∀z ∈ R , a.e. t ≥ t 0 .  (5.26)

                           Setting v = x (t) in (5.25) and z = x(t) in (5.26), we obtain the relations
                              dx
                            −    (t)+F(x(t)),x (t)−x(t) +ϕ(x(t))−ϕ(x (t)) ≤ 0, a.e. t ≥ t 0 , (5.27)
                              dt
                           and

                             dx
                            
   (t)+F(x (t)),x (t)−x(t) +ϕ(x (t))−ϕ(x(t)) ≤ 0, a.e. t ≥ t 0 , (5.28)
                             dt
                           which results in

                                  d(x − x)
                                 
         (t),x (t) − x(t) ≤
ωx (t) − ωx(t),x (t) − x(t)
                                     dt
   158   159   160   161   162   163   164   165   166   167   168