Page 164 - Complementarity and Variational Inequalities in Electronics
P. 164

The Nonregular Dynamical System Chapter | 5 155



                                      − [F + ωI](x (t)) −[F + ωI](x(t)),x (t) − x(t)

                                                    2
                                    ≤ ω||x (t) − x(t)|| , a.e. t ≥ t 0 .
                                                       n
                                            0
                                                                             n
                           Recalling that x ∈ C ([t 0 ,+∞);R ) and  dx  ∈ L (t 0 ,+∞;R ), we may write
                                                                  ∞
                                                             dt   loc
                                      d             2                 2
                                        ||x (t) − x(t)|| ≤ 2ω||x (t) − x(t)|| , a.e. t ≥ t 0 .  (5.29)
                                      dt
                           We may apply Lemma 2 with T> τ − t 0 , α = 0, b(·) = 0, a(·) = 2ω, and
                                             2

                           w(·) =||x (·) − x(·)|| to get
                                              2          2 2ω(t−t 0 )
                                  ||x (t) − x(t)|| ≤||x − x 0 || e  ,∀t ∈[t 0 ,t 0 + T ].  (5.30)
                                                   0
                           It follows that


                                             ||x (τ) − x(τ)|| ≤ δ e 2ω(τ−t 0 )  = ε.
                              A direct application of Theorem 11 gives a result that can be used to
                           study Q(Rx 0 ,RAR −1 ,RDu, ) =  (0,Rx 0 ,RAR −1 ,Du, ) (and therefore
                           also problem P(x 0 ,A,B,C,D,u, )).
                           Theorem 13. Let A ∈ R n×n  and   be as defined in (5.11). Suppose that
                                0          n           1          n

                           u ∈ C ([0,+∞);R ) with u ∈ L (0,+∞;R ). Let t 0 ∈ R and z 0 = Rx 0 ∈
                                                       loc
                                                            0
                                                                       n
                           D(∂ ). Then there exists a unique z ∈ C ([0,+∞);R ) such that
                                                 dz               n
                                                       ∞
                                                    ∈ L (t 0 ,+∞;R ),                 (5.31)
                                                       loc
                                                  dt
                                            z is right-differentiable on [t 0 ,+∞),   (5.32)
                                                       z(t 0 ) = z 0 ,                (5.33)
                                                  z(t) ∈ D(∂ ), t ≥ t 0 ,             (5.34)
                                       dz          −1
                                      
   (t) − RAR  z(t) − DRu(t),v − z(t)
                                       dt
                                                                  n
                                         +  (v) −  (z(t)) ≥ 0, ∀v ∈ R , a.e. t ≥ t 0 .  (5.35)
                           5.3 LYAPUNOV STABILITY OF A STATIONARY SOLUTION

                           Suppose in addition to the assumptions of Theorem 11 that

                                                   (∀t ≥ t 0 ) : f(t) = 0.            (5.36)
                           So, we consider problem  (t 0 ,x 0 ,F,0,ϕ):

                                                 dx               n
                                                       ∞
                                                    ∈ L (t 0 ,+∞;R ),                 (5.37)
                                                       loc
                                                  dt
   159   160   161   162   163   164   165   166   167   168   169