Page 168 - Complementarity and Variational Inequalities in Electronics
P. 168

The Nonregular Dynamical System Chapter | 5 159


                           with a :[0,σ]→ R satisfying a(t) > 0,∀t ∈ (0,σ), and

                                (∀x ∈ D(∂ϕ) ∩ B σ ) :
F(x),∇V(x) + ϕ(x) − ϕ(x −@ V(x)) ≥ 0.

                           Then the trivial solution of (5.37)–(5.40) is stable.

                           Proof. Without loss of generality, let 0 <ε <σ.Wehave

                                         (∀x ∈ D(∂ϕ), ||x|| = ε) : V(x) ≥ a(ε) > 0.

                           The function V is continuous, and by assumption V(0) = 0. Therefore, there
                           exists δ(ε) > 0 such that

                                             ||x 0 || ≤ δ(ε) =⇒ |V(x 0 )| < a(ε).

                           We choose
                                                 0 <η(ε)< min{ε,δ(ε)}.

                           Let us now apply Lemma 3 with R = ε and a = a(ε). We note that if x 0 ∈
                           D(∂ϕ) satisfies ||x 0 || ≤ η(ε), then V(x 0 )<a(ε) and ||x 0 || <ε. The conclusion
                           of Lemma 3 leads to

                                               (∀t ≥ t 0 ) :||x(t;t 0 ,x 0 || <ε,

                           which ensures that the trivial solution of (5.37)–(5.40) is stable.

                           Example 66. Let us consider problem (5.37)–(5.40) with

                                                   2
                                             (∀x ∈ R ) : F(x) = (x 2 ,−sin(x 1 ))
                           and
                                                      2
                                               (∀x ∈ R ) : ϕ(x) =   2 (x).
                                                                 R
                                                                  +
                           We choose
                                                                        x 2
                                                  2                      2
                                           (∀x ∈ R ) : V(x) = 1 − cos(x 1 ) +  .
                                                                        2
                           We have
                                                   2
                                             (∀x ∈ R ) :∇V(x) = (sin(x 1 ),x 2 )
                           and
                                                     2
                                              (∀x ∈ R ) :
F(x),∇V(x) = 0.
   163   164   165   166   167   168   169   170   171   172   173