Page 173 - Complementarity and Variational Inequalities in Electronics
P. 173

164  Complementarity and Variational Inequalities in Electronics


                           Proof. We claim that B σ ∩ S(F,ϕ) ={0}. Indeed, setting   = B σ and using
                           Proposition 24, we obtain

                                          B σ ∩ S(F,ϕ) ⊂ B σ ∩ E(F,ϕ,V ) ={0}.

                              The following result can be proved by following the same arguments as those
                           used in the proof of Proposition 25.

                           Proposition 26. Suppose that the assumptions of Theorem 11 hold together with
                                                                                   1
                                                                                      n
                           conditions (5.36), (5.42), and (5.43). Suppose that there exists V ∈ C (R ;R)
                           such that
                                  (∀x ∈ D(∂ϕ)) :
F(x),∇V(x) + ϕ(x) − ϕ(x −@ V(x)) ≥ 0

                           and
                                                   E(F,ϕ,V ) ={0}.

                           Then S(F,ϕ) ={0}, that is, the trivial stationary solution of (5.37)–(5.40) is the
                           unique stationary solution of (5.37)–(5.40).

                           5.3.1 A Nonregular Circuit (Continuation)

                           Let us again consider the mathematical model that corresponds to the circuit
                           depicted in Fig. 5.2 with

                                                   (∀t ≥ 0) : u(t) = 0.

                           We have
                                                           A

                                  ⎛      ⎞   ⎛                           ⎞
                                     dx 1         0       1         0      ⎛     ⎞
                                      dt                                      x 1
                                  ⎜      ⎟   ⎜    1      (R 1 +R 3 )  R 1  ⎟
                                  ⎜ dx 2 ⎟  =  ⎜ −     −                 ⎟⎝   x 2  ⎠
                                                 L 3 C 4   L 3      L 3
                                  ⎝          ⎝                           ⎠
                                      dt ⎠
                                     dx 3         0       R 1    − (R 1 +R 2 )  x 3
                                      dt                  L 2       L 2
                                                     B

                                               ⎛          ⎞
                                                    0   0

                                                   1    1     y L,1
                                               ⎜          ⎟
                                             −  ⎜         ⎟
                                                   L 3
                                               ⎝       L 3 ⎠  y L,2
                                                   1
                                                 −      0
                                                   L 2
                           and
                                                     y L ∈ ∂ (Cx)
   168   169   170   171   172   173   174   175   176   177   178