Page 170 - Complementarity and Variational Inequalities in Electronics
P. 170

The Nonregular Dynamical System Chapter | 5 161


                           Thus, for all x 0 ∈ D(∂ϕ) with ||x 0 || ≤ δ, we get

                                                     τ
                                 (∀t ≥ t 0 ) : c||x(t;t 0 ,x 0 )|| ≤ a(||x(t;t 0 ,x 0 )||) ≤ V(x 0 )e −λ(t−t 0 ) .
                           Thus

                                                  lim ||x(t;t 0 ,x 0 )|| = 0.
                                                 t→+∞
                              The following result is of particular interest for checking if the trivial sta-
                           tionary solution is globally attractive.
                           Theorem 16. Suppose that the assumptions of Theorem 11 hold together with
                           conditions (5.36), (5.42), and (5.43). Suppose that there exist a symmetric and
                           positive definite matrix V ∈ R n×n  and α> 0 such that
                                                                         2
                                            (∀x ∈ D(∂ϕ)) :
F(x),V x ≥ α||x||
                           and

                                           (∀x ∈ D(∂ϕ)) : ϕ(x) − ϕ(x − Vx) ≥ 0.
                           Then there exist constants c 1 > 0 and c 2 > 0 such that

                                         (∀t ≥ t 0 ) :||x(t;t 0 ,x 0 )|| ≤ c 1 ||x 0 ||e −c 2 (t−t 0 ) .  (5.46)

                           Proof. Let x 0 ∈ D(∂ϕ), and let

                                               (∀t ≥ t 0 ) : x(t) = x(t;t 0 ,x 0 ).

                           We have
                               dx                                            n
                              
  (t) + F(x(t)),v − x(t) + ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R , a.e. t ≥ t 0 ,
                               dt
                           and thus

                              dx
                             
   (t) + F(x(t)),−Vx(t) + ϕ(x(t) − V x(t)) − ϕ(x(t)) ≥ 0, a.e. t ≥ t 0 ,
                              dt
                           which results in
                               dx
                              
  (t) + F(x(t)),V x(t) + ϕ(x(t)) − ϕ(x(t) − V x(t)) ≤ 0, a.e. t ≥ t 0 .
                               dt
                           Thus
                                         1 d                      2
                                             
V x(t),x(t) ≤−α||x(t)|| , a.e. t ≥ t 0 .
                                         2 dt
   165   166   167   168   169   170   171   172   173   174   175